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ABSTRACT

We conducted research to predict daily transpiration in crops by utilising a combination of machine learning (ML) models

combined with extensive transpiration data from gravimetric load cells and ambient sensors. Our aim was to improve the

accuracy of transpiration estimates. Data were collected from hundreds of plant specimens growing in two semi-controlled

greenhouses over 7 years, automatically measuring key physiological traits (serving as our ground truth data) and meteoro-

logical variables with high temporal resolution and accuracy. We trained Decision Tree, Random Forest, XGBoost and Neural

Network models on this data set to predict daily transpiration. The Random Forest and XGBoost models demonstrated high

accuracy in predicting the whole plant transpiration, with R? values of 0.89 on the test set (cross-validation) and R* = 0.82 on

holdout experiments. Ambient temperature was identified as the most influential environmental factor affecting transpiration.

Our results emphasise the potential of ML for precise water management in agriculture, and simplify some of the complex and

dynamic environmental forces that shape transpiration.

1 | Introduction

Transpiration, the process of water evaporation from plants, has
been a subject of scientific studies for centuries. It primarily
occurs through leaves, facilitating a continuous transport of
water and essential nutrients from the roots. One remarkable
aspect of transpiration is how plants regulate it in response to
their surroundings through dynamic control mechanisms. This
process is intricately linked to the behaviour of stomata, small
pores found on the leaf surface. Stomata can adjust their
aperture to manage the rate of transpiration (Lange et al. 1971).

This adaptive response to the environment appears to have
evolved as one of the protective mechanisms against excessive
dehydration and physiological damage (Igbal et al. 2020).

The dynamic ability of plants to regulate their transpiration rates
plays a vital role in facilitating the exchange of carbon dioxide
and water, thereby improving water use efficiency and optimising
growth. Various factors, both biological, such as plant size (Geller
and Smith 1982) and environmental such as solar Radiation
(Pieruschka et al. 2010), temperature (Ben-Asher et al. 2008),
humidity (Rawson et al. 1977), soil water supply (Madhu and
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Hatfield 2014), carbon dioxide levels (Imai and Murata 1976;
Madhu and Hatfield 2014) and wind speed (Dixon and
Grace 1984), can impact the transpiration rates of different
plants. The understanding of these influential factors holds par-
amount significance in the fields of agriculture and ecophysio-
logical sciences.

Understanding and quantifying the factors which affect tran-
spiration and plant-water relations has a key role in optimising
water management strategies in agricultural and greenhouse
settings. Therefore, various modelling approaches have been
employed to simulate and evaluate transpiration rates in plants.
One common approach is the use of mechanistic models, which
are based on physiological principles and the understanding of
plant structure and function. For example, the semi-empirical
Ball-Berry model integrates stomatal conductance and en-
vironmental variables to estimate transpiration rates (Ball
et al. 1987). However, it is important to note that the Ball-Berry
model simplifies the complex process, assuming a linear rela-
tionship between stomatal conductance and photosynthesis,
which can significantly influence stomatal behaviour and
transpiration rates.

In contrast, process-based models like the Penman-Monteith
equation take a more comprehensive approach. Process-based
models represent a modelling approach that simulates natural
processes by representing the underlying mechanisms. Penman-
Monteith equation combines energy balance and aerodynamic
principles to predict evapotranspiration (ET) (Monteith 1965;
Penman 1948). The FAO56 Penman-Monteith is commonly used
in the agriculture community to estimate ET (Landeras et al. 2008).
However, previous studies have found that daily FAO56 Penman-
Monteith exhibited up to 22% discrepancy in accuracy compared to
the actual whole-plant transpiration measured using lysimeters
(Averbuch and Moshelion 2024; Kiraga et al. 2023; Lopez-Urrea
et al. 2006). These discrepancies underscore the ongoing need
for improvement and refinement in modelling techniques to better
understand and predict transpiration in different conditions and
environments.

Recent studies and reviews consistently show that machine
learning models such as artificial neural networks (ANN) and
support vector regression outperform conventional empirical
models in estimating ET across diverse climates. These have shown
promising results in estimating transpiration based on environ-
mental inputs and plant characteristics (Amani and Shafizadeh-
Moghadam 2023; Balasubramanian and Thirugnanam 2023;
Meneses et al. 2020; Ferreira et al. 2019; Xing et al. 2016, 2022).
However, many of these studies rely on broad or indirect data
labels (e.g., remote sensing, estimated transpiration, or synthetic
data) that do not fully capture the detailed plant-environment in-
teractions critical for accurate physiological modelling. To extend
our understanding of how machine learning has been applied in
this field, we conducted a systematic search of the Scopus database
for relevant studies (for more details, see Methods S1). Among
these, 33.9% (184 articles) employed indirect estimation methods,
primarily remote sensing (150 articles) and eddy covariance
(34 articles), while empirical models like FAO-56 Penman-
Monteith appeared in 26.0% (141 articles). However, only 4.8%
(26 articles) included keywords related to direct physiological
measurements, such as sap flow sensors, load cells, lysimeters,

porometry, or gas exchange systems—highlighting a clear gap in
capturing direct plant-environment interactions.

Among the relatively few studies that applied direct physio-
logical measurements, most relied on low-throughput, leaf-level
methods. For example, stomatal conductance has been assessed
using porometers or gas-exchange systems to train ML models,
with recent work showing that ML can outperform traditional
approaches in predicting stomatal behaviour (Gaur and
Drewry 2024; Saunders et al. 2021). Yet because these methods
are labour-intensive and restricted to individual leaves, they
often depend on compiled public or synthetic gas-exchange data
sets (Anderegg et al. 2018; Lin et al. 2015).

Accurately modelling whole-plant transpiration remains a
major challenge because it is a highly dynamic process regu-
lated by thousands of signalling and transport processes within
the plant and influenced by multiple, interdependent environ-
mental variables. To capture this complexity, ML models must
be trained on reliable, high-resolution physiological ground
truth data that reflect actual plant behaviour—not estimated or
proxy data streams. Sap-flow sensors have been employed as
labels for ML models in crops such as tomato and maize, where
Random Forest and deep learning approaches achieved high
predictive accuracy (Amir et al. 2021; Fan et al. 2021). However,
these sensors may damage tissue, alter water transport and lose
accuracy over time (Kumar et al. 2022). In contrast, load-cells
lysimeters are widely regarded as the gold standard for mea-
suring whole-plant transpiration, as they enable direct quanti-
fication of ET or transpiration flux (Halperin et al. 2017). ML
models trained on data derived from lysimeters can serve as
reliable benchmarks (‘ground truth’) for validating or calibrat-
ing alternative indirect estimation methods (Amani and
Shafizadeh-Moghadam 2023; Anapalli et al. 2016; X. Liu
et al. 2017).

Despite their benefits, most lysimeter-based studies have relied
on either drainage or manual lysimeters, typically in small
numbers because of their high cost and labour-intensive
maintenance (Z. Chen et al. 2020; Kiraga et al. 2023). Ex-
amples include two weighing units in alfalfa (Kiraga et al. 2023)
and maize (Z. Chen et al. 2020), four drainage units in garlic
(Abyaneh et al. 2010) and six weighing units for tomato
(Li et al. 2020). Even larger installations, such as the 64 drainage
lysimeters used by Sperling et al. (2023) in almond orchards,
were constrained by low temporal resolution, with drainage
recorded only every 14 days. Our approach, by contrast, le-
verages a high-throughput load-cells lysimeter platform, with a
high signal-to-noise ratio, enabling large-scale, directly labelled
data sets suitable for robust model training.

In this study, we focused on whole plant daily measurements
of transpiration for Mediterranean summer and winter crops,
tomato and cereals (Wheat and Barley), respectively. Over the
past 7 years, we have collected a precise data set of direct
physiological traits from hundreds of plant specimens, along
with corresponding environmental data. Leveraging this un-
ique data set, we employed machine learning models to pre-
dict the daily transpiration of well-irrigated plants. Our data
are distinguished by their high scale and the use of ground
truth annotated physiological measurements (e.g., whole plant
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transpiration g/day). These are obtained from an extensive
array of load cells lysimeters and atmospheric conditions.

The objectives of this study were to: (1) evaluate the effective-
ness of conventional tree-based machine learning models,
including Random Forest, an XGBoost model and a neural
network model, in predicting daily transpiration for tomato and
cereal crops; and (2) determine the hierarchical significance of
diverse ambient factors, thereby pinpointing the critical en-
vironmental factors that exert influence on transpiration.

2 | Materials and Methods
2.1 | Research Overview

In this study, we aimed to understand the determinants of daily
transpiration in plants using a structured machine learning
research workflow. Data collection took place within semi-
commercial greenhouses using a functional phenotyping plat-
form composed of load-cells lysimeters. This platform provided
essential information on several plant physiological traits
(transpiration, plant biomass, growth rate etc.) and ambient
conditions. After essential data pre-processing steps, including
outlier removal and transformation to daily values, we had 6115
observations (81% of the original daily data), split into training
and testing sets. Machine learning models, including tree-based
models and neural networks, were trained to predict daily
transpiration using the features: plant biomass, temperature,
humidity, Daily Light Integral (DLI), vapour pressure deficit
(VPD), plant type and soil type. Model evaluation encompassed
various metrics such as R* and root mean square error (RMSE).
Model interpretation was accomplished through the analysis of
feature importance using techniques like Permutation and
Shapley Additive Explanations (SHAP; see Section 2.9). These
methods hold major contribution to understanding the different
features of the models’ predictions and their impact on daily
transpiration. This workflow allowed us to gain valuable in-
sights into the determinants of daily transpiration in plants.

2.2 | Experimental Site

Data were collected from two semi-controlled greenhouses located
at the I-CORE centre for Functional Phenotyping of the Faculty
of Agriculture, Food and Environment in Rehovot, Israel (http://
departments.agri.huji.ac.il/plantscience/icore.php). ~The ‘main
greenhouse’ (Figure 1) is a polycarbonate-covered structure at co-
ordinates 31°54'15.0“N, 34°48'03.6“E, measuring 18 m in length
and 16 m in width, with a gutter height of 4.5 m and a maximum
ridge height of 6 m (dual-gable structure). The estimated internal
volume, based on an average height of 5.25m, is approximately
1417.5m3. The ‘secondary greenhouse’ (Figure 1B), also poly-
carbonate covered, located at 31°54'22.5” N, 34°48'10.6” E, spans
6 x 17 m? and reaches a height of 3 m.

Both facilities feature natural daylight conditions and are
equipped with a cooling pad along the northern wall to main-
tain temperatures below 35°C. Ventilation is achieved by using
a positive pressure cooling system, where outside air is pushed
into the greenhouse through a wet pad by four fans, each with

capacity of 18 000 m>/h, totalling flow rate of 72 000 m>/h (This
setup enables an air exchange rate of approximately 51 air
changes per hour, for the main greenhouse). The fans are
automatically activated about 30 min before sunrise and turned
off about 30 min after sunset to ensure consistent airflow during
the photoperiod. This high ventilation rate is designed to
maintain CO, concentrations similar to those in the ambient
outdoor air, facilitating natural plant responses. To complement
these efforts and further simulate natural external conditions,
wind speed and direction are precisely monitored using an
ATMOS 22 ultrasonic anemometer, centrally located in the main
greenhouse. This sensor records an average wind speed of
0.324m/s. For both greenhouses, the experimental conditions
varied, with natural DLI values ranging from 2 to 34 mol/(m2-day)
and mean daily temperatures fluctuating between 10°C and 33°C
(Table S1A).

2.3 | General Experiment Setup and Data
Collection

The data were collected from June 2018 to March 2024. Using
the functional phenotyping platform—PlantArray (PlantDitech,
Israel; Figure 1C) as described by Dalal et al. 2020; Halperin
et al. 2017. Briefly, an array of load cell lysimeters was utilised
(Figure 1), to continuous plant weight measurement and the
derivation of both transpiration-induced water loss and daily
plant mass accumulation. To ensure that water loss reflects
plant transpiration only, the surface of the soil in each pot was
sealed to prevent soil evaporation (Figure 1D). All data were
automatically collected and uploaded to the cloud-base SPAC
analytics system (PlantDitech, Israel).

Meteorological data, consisting of four essential variables—
temperature, VPD, light and relative humidity (RH), were col-
lected using a weather station (Watchdog 2000 series; Spectrum
Technologies, Illinois, USA) connected to the PlantArray sys-
tem. Within each greenhouse, the atmospheric sensors were
positioned at the centre of the greenhouse, approximately 1 m
above the height of the pot surface (Figure 1C).

The lysimeter-based phenotyping system employed several
strategies to enhance the signal-to-noise ratio, thereby reducing
potential artefacts in the noisy greenhouse environment. These
strategies include the use of high-accuracy load cell transducers,
achieving a precision of +0.167 g per kg loaded on each cell.
These transducers are also temperature-compensated to effec-
tively minimise signal drift caused by ambient temperature
fluctuations. Furthermore, each load cell is connected via a
short cable (45cm) to its individual analogue-to-digital (A/D)
controller, significantly reducing analogue electrical interfer-
ence and noise (typically associated with long cables connected
to a single data logger). To prevent overheating due to direct
solar radiation, thermal insulation and sealed covers are applied
separately to each load cell. In addition, vibration-induced noise
is mitigated by placing compressed foam cushions and mass
under each load cell. Measures to counteract the ‘pot effect’
(Gosa et al. 2019), such as double-pot arrangements isolating
the soil and roots from direct solar radiation-induced heat, to
ensure the reliability and consistency of the physiological data
collected during the experiment (Figure 1E).
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FIGURE 1 | Configuration of the load cell lysimeter system and greenhouse. (A) Main greenhouse containing various crops monitored using the

PlantArray phenotyping platform. (B) Secondary greenhouse with wheat plants monitored using the same system. (C) Image of a single
PlantArray unit, showing the load-cell lysimeter, double-pot setup, ‘personalise’ controller collecting data and controlling each pot irrigation, and the
central weather station used for continuous environmental monitoring. (D) Top view of a pot showing the sealed soil surface cover, designed to
isolate plant transpiration from soil evaporation. (E) Photorealistic illustration of a single lysimeter unit. It includes a temperature-compensated load
cell that converts mechanical force into an electrical signal, directly connected to the controler. The cell is mounted between two steel platforms to
ensure stable weight measurement. As shown in C, the lysimeter is typically covered with a polystyrene block and a thermal-isolated lid. [Color

figure can be viewed at wileyonlinelibrary.com]

2.3.1 | Plant Material and Growing Media

The plants in the greenhouse were grown in pots (4 L) filled with
sand (Silica sand grade 20-30, particle size 0.595-0.841 mm;
Negev Industrial Minerals Ltd., Yeruham, Israel) or soil (Bentel
11 garden mix, composed of (w/w) 55% peat, 20% tuff and 25%
puffed coconut coir fibre; Tuff-Substrates, Alon Tavor, Israel).

Tomato, wheat and barley (cereals), were employed in this ex-
periment. The tomato (Solanum lycopersicum) variety incorpo-
rated in the study was mainly the M82 cultivar. The cereals
included T. turgidum subsp. durum ‘Svevo’ and T. aestivum cv.
Gadish, among others. Focusing on these commonly cultivated
crops, ensuring multiple repetitions and capturing the diversity
of both winter and summer representations.

2.3.2 | Irrigation and Water Balance Measurements
All pots were irrigated through repeated irrigation and drainage

cycles every night, reliably restoring the soil to field capacity
(hereafter referred to as ‘well-irrigated”). This approach not only

maintained optimal soil moisture levels but also facilitated
leaching to prevent salt accumulation. Daily pre-dawn pot mass
was measured after full drainage. Plant mass was calculated at
this point. The difference in pot mass between consecutive days
reflects the plant's biomass gain. The lack of additional irriga-
tion throughout the daylight hours ensured a monotonic pot-
mass decrease between subsequent irrigation events. Transpi-
ration was calculated based on the mass loss during the day. For
full details on calculations and system, see Dalal et al. (2020)
and Halperin et al. (2017).

In this study, we focused exclusively on non-stressed plants by
ensuring that soil water content consistently remained above the
transpiration-limiting threshold (Halperin et. al. 2017). This was
achieved by selecting data exclusively from control (non-drought)
treatments, while deliberately excluding any data from plants that
surpassed their pot's capacity, thereby ensuring non-pot effect of
draught conditions. Therefore, we checked the data manually, re-
moving entries where plants exhibited ‘pot limitation’, a scenario
where a plant's transpiration plateaus due to reaching the pot's
maximum available water capacity. While the calculated total
water-holding capacity is approximately 860 g in sand and 1700 g in
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potting media (Dalal et al. 2020), the actual available water for
plants is lower: around 600 g/day in sand and 1200 g/day in soil,
influenced by root structure and soil properties.

2.4 | Data Pre-Processing

The data were initially collected at 3-min intervals. For this
study, it was further processed to generate daily values, covering
the period from first light to last light (Table 1). Using daily
values reduces the total data volume to balance capturing en-
vironmental variability while keeping data processing man-
ageable. Moreover, this simplifies data interpretation, making
it practical for applications such as irrigation decisions, much
like other common methods, including the FAO56 Penman-
Monteith model for irrigation management.

The type of potting media (sand or soil) and the specific plant
species (tomato or cereal) were recorded. Light data in terms of
Photosynthetically Active Radiation (PAR) was measured at
3-min intervals. The DLI was calculated using the formula:

SPARlight [ “HZOI )

pLr| Mo |_ T8 % 86400 | =X
m? x day n day )(1)

1 mol
1 000 000 pmol

where n is the number of samples in a full day (480 if sampled
every 3 min). ZPARIight(“m;;l) is the sum of PAR light mea-

m
surements throughout the day.

This calculation provided insights into the cumulative
light exposure experienced by the plants over the course
of a day.

Our data set initially included 7547 observations, where each
observation represented a single plant measured on a given day.
An example of an individual plant is illustrated in Figure 2.
After a comprehensive data cleaning process, we concluded
with a total of 6115 observations. This reduction was due to the
removal of observations with missing values, extreme outliers
and those exhibiting irregular behaviours such as weight loss,
water shortage, or illnesses. The final variables and some pre-
processing methods, such as daily aggregation of values and
encoding, are detailed in Table 1.

2.5 | Tuning, Training and Testing Data Sets

After preprocessing, the data set comprised 6115 daily obser-
vations. Figure 2 illustrates a sample plant with 24 observations.
Figure 3 presents the full data set from the main greenhouse,
including meteorological and aggregated physiological data.
The feature variables included Temperature, RH, VPD, DLI,

TABLE 1 | Data set description and the main preprocessing methods.
Category Variable Units Description
ID Timestamp Date

Icore greenhouse

Expld
PlantId
Meteorology Temperture °C
RH %
VPD kPa
DLI mol/m? x day
Others Potting media

Plant types

Plant weight Plant biomass g

Transpiration g

The greenhouse from which the data were collected, encoded as
Main = 1 and secondary = 0.

Experiment number: Each independent experiment contained
1-10 plants (repetitions) that the data were collected
simultaneously from. A total of 48 independent experiments
were used.

The plant-specific ID number, each plant was measured
continuously for about 3-4 weeks. On average 23 daily
observations per-plant. A total of 269 plants were used.

The average temperature at daytime (from the first to last light).

The average Relative Humidity at daytime (from the first to last
light).

The average Vapour Pressure Deficit (VPD) at daytime (from the
first to last light).

Daily Light Integral (DLI) was calculated using Formula 1.

‘Encoded soil’—dummy variables, 0 = silica sand, 1 = soil (4508
and 1607 observation respectively).

‘Encoded plant'—dummy variable, 0 = tomato, 1 = cereal (3975
and 2140 observation, respectively)

The net weight of the plant as calculated at 4AM, after soil field
capacity (for details see Halperin et al. 2017).

Daily water evaporating through the plant (for details see Halperin
et al. 2017). This variable was used as output for the models.
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FIGURE 2 | Representative meteorological and physiological data
derived from the I-core greenhouse PlantArray system. This figure
presents data from a single plant as an example. (A) Plant identity
information: plant type, potting media, ID number and plant picture at
the end of the experiment. Daily average of (B) light integral, (C)
temperature, (D) relative humidity and (E) vapour pressure deficit
over a period of 22 days. (F) Plant biomass—plant net weight (G),
whole-plant daily transpiration, highlighting the sensitivity of the
transpiration to the methodological changes. Filled grey circles indi-
cate input (X) variables, and open circles indicate output (Y) variables
used for model training and prediction. [Color figure can be viewed at
wileyonlinelibrary.com|

plant biomass, plant type and soil type, with the target variable
being daily transpiration (Figure 2, Table 1).

2.5.1 | Validation Data Set (Holdout)

To assess the model's generalisability, a holdout data set com-
prising 805 observations from four randomly selected experi-
ments was established, a random seed function was set to
ensure repeatability. This subset includes 400 observations
related to tomato plants and 405 observations concerning cereal
plants (for more information, see Table S1b and Figure S1b).
This holdout data set aims to reflect the model's performance
and effectiveness on unseen data.

2.5.2 | Training Data Set

Ninety percent (4779 observations) of the remaining data was
randomly selected to tune the hyperparameters, as detailed in
Section 2.7. This initial subset helped determine the optimal hy-
perparameters, allowing us to assess the effectiveness of the tuning
process. After selecting the best hyperparameters, the models were
then trained on the full data set, excluding the holdout set (in total
5310 observations). This approach ensures that the final model
training incorporates the broadest data spectrum available while
retaining an independent holdout set to evaluate the model (see
Section 2.9).

2.6 | Machine Learning Models for Estimating
Daily Transpiration

2.6.1 | Decision Tree

Decision trees are a simple, yet powerful machine learning model
used for classification and regression tasks. They recursively split
the data into subsets based on the features to create a tree-like
structure. At each node, the decision tree selects the feature and
split point that minimises impurity, aiming to create more
homogenous subsets. The final predictions are made based on
average value (for regression) of the samples in the leaf nodes.
Decision trees are interpretable and can capture complex re-
lationships in the data, but they may suffer from overfitting and
lack generalisation ability. The induction of decision trees is one
of the oldest and most popular techniques for learning discrim-
inatory models, which has been developed independently in the
statistical (Breiman et al. 1984; Mingers 1989) and machine
learning (Quinlan 1993) communities (Fiirnkranz 2011).

2.6.2 | Random Forest

Random Forest is an ensemble learning technique based on
decision trees. It builds multiple decision trees, each trained on a
random subset of the data and a random subset of the features.
The final prediction is obtained by averaging (for regression) the
predictions of individual trees. Random Forest overcomes the
overfitting issue of decision trees and improves the model's
performance and robustness. It can handle high-dimensional
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FIGURE 3 | Summary of meteorological and physiological data collected in the main I-CORE greenhouse over the entire study period. This figure
presents the full data set collected from the PlantArray lysimeter system across multiple experiments conducted in the main greenhouse. Panels (A-D)
show daily average meteorological conditions: (A) daily light integral (DLI), (B) temperature, (C) relative humidity (RH) and (D) vapour pressure deficit
(VPD), recorded continuously throughout the experiments timeline. Panels (E, F) present physiological responses averaged across all plants measured in
each experiment. (E) Average plant biomass, illustrating the typical pattern of plant development, where plants begin small and progressively
accumulate biomass over time. (F) Average daily transpiration per plant, reflecting physiological responses to both environmental conditions and
developmental stage. Gaps along the x-axis correspond to time periods when no relevant experiments were conducted or when the greenhouse was
inactive. Note that different experiments may overlap in time.
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data sets and capture interactions between features, making it a
popular choice for various applications.

The random forest or decision tree forest is an algorithm created
in 1995 by Ho (1995), then formally proposed by scientists in
2001 (Breiman 2001; Cutler and Zhao 2001).

2.6.3 | XGBoost Model

eXtreme Gradient Boosting (XGBoost) is a method, initially
proposed by T. Chen and Guestrin (2016), which generally
generates high accuracy and fast processing time while being
computationally less costly and less complex. The XGBoost
model is a scalable machine learning system for tree boosting.
The XGBoost model integrates several ‘weak’ learners for
developing a ‘strong’ learner through additive learning. Parallel
computation is automatically implemented during training to
enhance computational efficiency (Fan et al. 2021).

2.64 | ANN

Neural networks are a class of deep learning models inspired by
the structure and function of the human brain (Haykin 2009;
Rosenblatt 1958). They consist of interconnected nodes
(neurons) organised into layers. Each node applies an activation
function to the weighted sum of its inputs to produce an output
(Fukushima 1969). As many ML models, Neural networks can
learn complex and nonlinear relationships in the data through
the process of forward and backward propagation during training
(Leibniz 1920).

2.7 | Hyperparameters Tuning

Hyperparameter tuning is the process of discovering the opti-
mal configuration for the hyperparameters of a machine
learning model to achieve the best performance. Hyperpara-
meters are external configuration settings established before the
training process and are not learned from the data. Examples
included learning rates, regularisation strengths and the num-
ber of trees in a random forest.

This process of hyperparameter tuning was carried out through
cross-validation grid search on the training data. Grid search
cross-validation is a method employed to systematically explore
a vast array of combinations of hyperparameter values. By
leveraging five-fold cross-validation, the data set was divided
into five subsets, allowing for multiple rounds of training and
validation. This approach aimed to find the optimal set of hy-
perparameter values and ensure the model's robustness by
evaluating its performance across different subsets of the
training data. The optimal hyperparameter values and the
options we tested are summarised in Table 2.

2.8 | Modelling Process

We implemented our models using a robust set of Python libraries
tailored for statistical computing, data manipulation and machine

learning. Specifically, we used: Scipy (Virtanen et al. 2020), for
conducting statistical tests, Numpy (Harris et al. 2020), for high-
performance numerical operations, Pandas (Mckinney 2010; The
pandas development team 2020), for data handling and manipu-
lation, Sklearn (Pedregosa et al. 2011) for machine learning
algorithms and model evaluation tools, Keras (Chollet 2015) and
TensorFlow (Abadi et al. 2016) for building and training neural
network models.

2.9 | Cross-Validation and Performance
Evaluation

Cross-validation was conducted on the data set to validate
model stability and reliability. We used 10-fold cross-validation,
allowing each subset of data to be used as both training and
testing sets iteratively, ensuring comprehensive performance
assessment. This method not only helps in assessing the per-
formance across different slices of data but also in comparing
the effectiveness of different models under varying conditions
(Table 3).

The final model evaluation was performed on the holdout set,
using metrics such as RMSE, mean absolute error (MAE) and
the R2 statistic to compare the predictions and actual mea-
surements (Table 4). These metrics provided a detailed measure
of model accuracy, prediction error and the proportion of var-
iance explained by the model.

2.10 | Model Validation Using External
Greenhouse and Growth Room Data

To further evaluate the generalisability of our machine learning
models, we tested their performance on two external data sets
collected independently from the training and validation data.
The first data set was obtained from a greenhouse facility located
in Tel Aviv University, operated entirely by a different research
group, using separate personnel, experimental planning and
management protocols. Although this facility employed the same
phenotyping platform (PlantArray; PlantDitech, Israel) and fol-
lowed a similar measurement protocol, the experiments were
conducted independently from those at the I-CORE centre in
Rehovot. Data were collected using the SPAC analytics system
and included plant biomass and transpiration measurements
from experiments carried out between 17 April 2024 and 16
November 2024.

For external testing, we selected three individual plants, each
from a different experiment. Since the Tel Aviv team includes
soil bulk weight in their lysimeter measurements, we standar-
dised the data sets by adjusting the initial seedling biomass to
10 g to match the conventions used in our own experiments,
where only net plant biomass is recorded. This adjustment
ensured consistency and comparability between the data sets.

The second external data set was collected from our indoor
growth room (Room 101; Figure S2), located within the I-CORE
centre, but operated under different environmental conditions
and experimental constraints compared to the main green-
house. This data set offers an independent context due to the

Plant, Cell & Environment, 2025

a5UBD17 SUOWWOD dAIIEa1D) 3|edl|dde ayy Aq peusenob ake oo YO ‘9N Jo Sa|N 1oy Arelq 1 aulUO AS[I UO (SUOI}IPUOD-pUR-SWLIBYWOD" A3 | 1M AR 1 BUlUO//:Sd1Y) SUOIPUOD pue SWiB | 83U} 89S *[520z/TT/60] Uo AiqiTauljuQ AB|IM ‘Bels| aueiyoo) A zgz0, 90d/TTTT 0T/I0p/wod A |1m Alelq 1 puljuo//:sdny wolj papeojumoq ‘0 ‘0y0ES9ET



13653040, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/pce. 70222 by Cochrane Israel, Wiley Online Library on [09/11/2025]. See the Terms and Conditions (https:/onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

(senunuo))

SIOPISU0D 9p0d Yy [, ‘Sururern) Suunp sjySrom s,Jopowt 3y}

doidsurx [.doxdsuw, ¢ wepe, ] 91epdn 0} pasn wiyyriod[e uonesiundo Y} SOUTULIdIAP Jostundo
[88¢ ‘95T ‘veT
88¢ ‘T6T ‘09T ‘8T ‘96 V9 ‘T€] anoqe pauredxyg T Toe[ - s)run”wnu
J10m)aUu 3}
$1 08 1S = yooda [88¢ ‘95T ‘vz JO YIpIm 913 sjuasardal 3 I0MISU [BINSU ) JO I9Ke] JI0MIDN
0F X S91epIpuRd 9671 143 ‘T6T ‘09T “‘STT ‘96 ‘p9 ‘T€] USppIY Yoed Ul (SuoInau) sjrun Jo 1quinu a3 S[0I3uod T I9A®[ — sjrun” winu [BINON
-9z1s doys a3 Suronpar £q
ISNQoI 210w WY3LI0Z[e Y3 saxew djel SuruIed] Id[[BWS
10 [T0°0 ‘10 ‘c'0] V '9[qQUISSUD dY} UI 9313 YIBd JO UOHNQLIIU0D ) SIBIS 91eI UIUIed]
's)yS1om 9} JO 9zIS 9Y) UO PIseq UONOUNJ SSO[ Y}
0 [Z ‘T ‘0] 01 Lyreuad e sppe I "s1ySom uo wiId) uonesuem3aI ¢l epquie] 8oI1
‘(9am 9
Surunid ur sdjay) o291 ay3 Jo apou Jed[ © uo uonnied
0 [z0 ‘T0 ‘0] I9y3Ing & ayew 0) painbal uononpal sso] WNWIUIA eurwes
L [£ 95 ‘€] Jaoqe paure[dxg dop xew
"SNJBA UBISSOY JO[BUWS B 9ARY
ye) sipds Sunjuaaaid ‘sanfea 19318 "9poU JeI[ ISI[BWS
S 0819 = SP[O} 1 [s vz 1] oy} Jo (uerssay) 1ySrom ordures Jo wWINs WNWIUIA YSrem ™ pIIyo urux
G X SajepIpued 9671 001 [00T ‘08 “09] aaoqe paure[dxy SI0JeWIS U 1s00g9X
*)$910J WOpUeI AY) Ul s391) SuIprng
usym pasn are (Jusurade[dar yim Surdures) sojduwres
aniJ, [osred ‘oniy] densiooq 19U1oUM souTWIR)Rp I9joweredradAy sIyJ, densjooq
ST [ST ‘21 ‘ouoN] aaoqe paure[dxy yidop xewr
1 [z ‘1] aaoqe paure[dxg Jeo[ sordwres™ urw
¥ [s ‘¥ ‘€ ‘T] aaoqe paure[dxg Jpds~sordwes uru
S 00CT = SPIO} *9[QUISSUQ }S9I0J WOPURI Y} Ul SPUNol 189104
-QATJ X S3JBPIPULD Ot 00T [00T ‘08 ‘0L ‘09 ‘OS] gunsooq 10 (SI0JBWI)SY) SII} UOISIOIP JO Joquinu YT, SI0JeWSd U wopuey
01 [2T ‘Ot ‘L ‘s ‘ouoN] *991) UOISIOAP ® Jo Yidop Wnuiixew ayL, dep xew
"S99I} Y} JO dpou Jed[
¥ [¥ ‘¢ ‘¢ ‘1] ® 18 9q 01 parmnbar sojdwres Jo Joquunu WNWIUTW Y, Jeo[ sordwres urw
$19 00 = SPIO] "9pou [euIdIUI
-9AT} X S9)epIpPUEBD (09 % [¥ € 2] ue J11ds 03 paxmbar sojdures jo IoqUINU WNWIUTW Y], ypds—sordwes urw 991, uoIsag
suoneuIquIo) anfea suondQ uoneuerdxy J1a1ouwreredadAH ISPOIN
rewndo

*J3S BJep 9y} JIISAO0 ISYIISU JIFISPUN JOU PInom [dpow 3y} os ‘Afiqe Sururea] ayy agueyd siojowered asayy Supsnlpy siojowerediaddH | z ATAV.L




(Continued)

TABLE 2

Optimal

value Combinations

Explanation Options

Hyperparameter

Model

two options: ‘adam’ (Adaptive Moment Estimation) and

‘rmsprop’ (Root Mean Square Propagation)

tanh

[‘relw’, ‘tanh’]

The activation function applied to the output of each
neuron in the hidden layers. Common choices are ‘relu’

Activation - Layerl

(Rectified Linear Unit) and ‘tanh’ (Hyperbolic Tangent).

Activation functions introduce non-linearity to the

network, enabling it to learn complex patterns.

tanh
0.01

[‘relu’, ‘tanh’]
[0.001, 0.01]

Explained above

Activation- Layer 2

The learning rate controls the step size at which the

learning rate

optimiser updates the model's weights in each iteration

during training. It is a crucial hyperparameter as it

affects the speed and stability of training.

Note: Implementing GridSearch cross-validation on 90% of the training data set. Systematically all the possible combinations of the hyperparameter options were evaluated, and the optimal setting was retained. We used the five-fold

cross-validation splitting strategy to test the optimal parameters on five different subsets of the training data set.

controlled lighting, humidity and temperature conditions spe-
cific to growth room setups.

Both external data sets were evaluated using our Model Testing
App, a web-based interface designed to assess model perform-
ance on new user-provided data sets. Users with SPAC analytics
access can upload their experimental data and receive transpi-
ration predictions generated by our pre-trained models, along
with performance metrics for direct comparison against mea-
sured values. The application is publicly available at: https://
test-daily-transpiration-model-spac-user.streamlit.app/.

211 | Feature Importance

To interpret the predictions and understand the importance and
contribution of each feature to building the models several
feature important tests were presented.

2.11.1 | Impurity-Based Feature Importance
Impurity-based feature importance is a technique commonly
employed in decision tree-based machine learning models to
assess the significance of individual features in making pre-
dictions. The method calculates the contribution of each fea-
ture by measuring how much it reduces the impurity (e.g.,
Gini impurity or entropy) in the model's decision nodes. This
approach is simple, computationally efficient and interpret-
able, as it provides a clear ranking of features based on their
impact. However, Impurity-based feature importance tends to
favour variables with more categories or levels, which can lead
to biases.

2.11.2 | Permutation Feature Importance

Permutation feature importance is a technique used to evaluate
the significance of individual features in a machine learning
model. The process involves systematically shuffling the values
of a single feature in the data set and observing the impact on
the model's performance. By comparing the model's perform-
ance before and after the permutation, a decrease in perform-
ance indicates that the feature is crucial, as its alteration
disrupts the model's predictive accuracy. This approach does
not require retraining the model and can be applied to various
algorithms (not just tree-based models). However, it may not
capture feature interactions and is most effective when dealing
with uncorrelated features. In our study, the ‘sklearn. inspec-
tion. permutation_importance’ was used.

2113 | SHAP

SHAP by Lundberg et al. (2017) is a method to explain indi-
vidual predictions. SHAP is based on the game-theoretically
optimal Shapley values (Molnar 2022). Shapley values provide a
mathematically fair and unique method to attribute the payoff
of a cooperative game to the players of the game (Merrick and
Taly 2020; Shapley 1953). SHAP values help us understand the
role of each feature in a prediction by calculating how much

—
=]
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each feature has pushed the prediction higher or lower, com-
pared to the prediction without that feature. For instance,
applying SHAP to our model (Figure S4 and see Figure 6)
revealed that temperature significantly influences predicted
daily transpiration. Lower temperatures (depicted in blue)
correlate with negative SHAP values, pushing predictions
downward, while higher temperatures (depicted in red) asso-
ciate with positive SHAP values, pushing predictions upward.
Therefore, in this context, the model suggests that transpiration
tends to be lower at lower temperatures. The SHAP library in
Python was used (Lundberg et al. 2017). For more info, see
https://shap.readthedocs.io/en/latest/example_notebooks/api_
examples/plots/beeswarm.html#.

2114 | Ablation Analysis

In addition to the full feature set (Table 1), which included
plant biomass as a predictor, we evaluated several ablation
feature sets to test model robustness (Table 6). These included
(i) a model excluding plant biomass, (ii) an age-based model in
which ‘plant age’ (days since the start of recording) was used as
a minimal proxy for plant size, (iii) a model excluding tem-
perature and (iv) a minimal-predictors model restricted to
temperature, plant biomass and soil type. It is important to note
that plant age does not represent true biological age, as
recording did not necessarily begin at the same developmental
stage; all plants were assigned ‘day 1’ at the start of logging,
regardless of initial size. All ablation models were trained and
evaluated using the same preprocessing steps, hyperparameters
and cross-validation strategy as described above, ensuring full
comparability with the full models.

212 | Statistical Analysis

Several statistical methods were employed in this study. To
assess the correlation between features, we used the correla-
tion coefficient (r), which measures the strength and direction
of the linear relationship between two variables. For evaluat-
ing model performance, we used R2 (coefficient of determi-
nation), which represents the proportion of variance in the
dependent variable that is predictable from the independent
variables. t-tests were used to compare the means of two
groups and to assess whether there were significant differences
between them. p values associated with the t-tests were used to
determine statistical significance, with a threshold of p <0.05
considered significant.

For categorical variables, we used a chi-square test to evaluate
associations between categories. The chi-square value indi-
cates the magnitude of the discrepancy between observed and
expected values, while the p value reveals whether this dis-
crepancy is statistically significant. To compare multiple
groups and determine whether their means differed signifi-
cantly, we applied analysis of variance (ANOVA), calculating
the F-statistic and corresponding p value to evaluate overall
model significance. In addition, when group variances were
unequal, we used Welch's test as a robust alternative to AN-
OVA, reporting the F-ratio and p value to verify the statistical
significance of the differences.

3 | Results

From June 2018 to March 2024, multiple experiments were
conducted in our greenhouses using the PlantArray systems.
These experiments yielded continuous data on both plant phys-
iology and environmental conditions. We collected, cleaned,
labelled and averaged the data to obtain daily values, as described
in the methods Section 2.4. For this study, we have used only
well-irrigated data (soil water content at the end of the day was
higher than the total daily transpiration; see Section 2.3.2),
resulting in a data set comprising 6115 observations, with each
observation representing a single plant, and its ambient condi-
tions in a day of measurement.

This article investigates the environmental responses of tomato
and cereal crops, cultivated during summer and winter seasons,
respectively. Our findings reveal significant differences in en-
vironmental conditions between the two (Figure 4A and Fig-
ure S3). Tomato plants were exposed to significantly higher
summer temperatures (grand mean 25.3°C for tomatoes and
18.6°C for cereals, p < 0.001; Figure 4A1) and RH (grand mean
56.15% for tomatoes and 52.49% for cereals, p <0.001; Fig-
ure 4A2) compared to the winter conditions experienced by the
cereals. Consequently, tomato plants were exposed to higher
daily average VPD than cereals (grand mean 1.53 and 1.22 Kpa,
respectively; p < 0.001; Figure 4A3). The DLI for tomatoes was
also greater (p <0.001), with an average of 18.27 mol/m2/day
and a peak of 33.99 mol/m2/day, whereas cereals recorded a
lower average DLI of 11.36 mol/m?/day and a maximum of
28.96 mol/m2/day (Figure 4A4).

Despite cereals having a higher average plant biomass (148.67 g)
compared to tomatoes (111.54 g), their transpiration rates were
significantly lower than those of tomatoes (average 160.24 and
318.32 g/day respectively; p <0.001; Figures 4A5, 4A6). This
comparative analysis underscores the distinct environmental
adaptabilities and physiological responses of these crops under
varying seasonal conditions.

The data present a relatively high correlation between DLI and
temperature (r=0.75) and a minor correlation between tran-
spiration and plant biomass (r=0.61; Figure 4B). VPD is rela-
tively correlated to temperature (r=0.67), RH (r = — 0.71) and
DLI (r = 0.54) but not to transpiration (r=0.21; Figure 4B).

3.1 | Model Precision and Accuracy

Machine learning models were trained using the features: plant
biomass, temperature, RH, VPD, DLI, plant type and soil type to
predict daily transpiration (Table 1). Hyperparameters for all
models were finely tuned using a Cross-Validation GridSearch
on 90% of the training data set.

Our final models underwent rigorous evaluation through a
10-fold cross-validation process. This involved partitioning the
data set into 10 subsets, with 90% allocated for training and the
remaining 10% for testing, repeated across 10 iterations. Such
meticulous methodology facilitated comprehensive assessment
under diverse training scenarios. To ensure robust performance
evaluation, we conducted statistical analyses, including RMSE
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FIGURE 4 | Data visualisation. The data were collected between June 2018 and February 2022, by the lysimeter system, and preprocessed to
daily values. (A) Data variety between tomato and cereal crops (3975/2140 observations respectively). Box and Whisker of daily (A1) temperature,
(A2) RH, (A3) VPD, (A4) DLI, (A5) plant biomass and (A6) plant transpiration (for expansion see Figure S1). Asterisks indicate statistical difference,
t-test; p < 0.001. (B) Pearson correlation coefficient chart of continuous features: Temperature, RH, VPD, DLI, plant biomass and transpiration (for

expansion see Figure S1). p values are presented in brackets.

and R? calculations across the 10 folds. Notably, while the
Decision Tree model displayed respectable performance, the
models Random Forest, XGBoost and Neural Network show-
cased significant accuracy (p < 0.05, Table 3). Random Forest
with the mean R2 of 0.88 and an RMSE of 86.93. Similarly,
XGBoost and Neural Network models yielded competitive mean
R? values of 0.89 with RMSE values of 85.19 and 84.63,
respectively. Neural Network, however, distinguished itself as
the slowest model, completing the 10-fold cross-validation in
9.66 min (p < 0.05, Table 3).

3.2 | Testing the Models Using Holdout
Experiments

Randomly selected experiments were separated from the rest of
the data to serve as a validation data set for testing the models’
performance on unseen data. The holdout data structure was
different from the data used to tune and train the models; with a
lower temperature (t-test = 14, p<0.001), a different ratio of
Tomato: Cereal (Chi-square = 94, p <0.001), and a higher cor-
relation between plant biomass and transpiration (Table S1, Fig-
ure S1). Moreover, the distribution of transpiration values in the
holdout data significantly differed from those in the training data
set (p < 0.001). Notably, the upper quartiles of transpiration in the
training and holdout data sets were 379 and 255 g, respectively
(Figures S5 and 5A). When the trained models were applied to
this new data set, the Random Forest model demonstrated high
accuracy in predicting transpiration, with a correlation coefficient
(r) value of 0.91 (Figure 5B). The residual plot (Figure 5C) shows
that the model's residuals are mostly centred around zero,

TABLE 3 | Comparison of evaluation scores among the four
methods models.

Model RMSE R? Run time (sec)
Decision tree 104.51* 0.83% 0.01%
Random forest 86.93% 0.88% 1.65%
XGBoost 85.19% 0.89% 0.24%
Neural Network 84.63% 0.89% 57.99%

Note: The average of 10-fold cross-validations are presented. An ANOVA test was
conducted to statistically evaluate performance differences among the 10-fold
models scores, followed by Tukey's Honest Significant Difference (HSD),
differences are indicated by letters.

ap <0.05.

indicating good predictive performance. Note that the distribution
is wider where the transpiration is higher. The XGBoost exhibited
the highest R* (0.82) and the lowest RMSE (88.41 g) among all
models (Table 4, N.S.). The Random Forest Regressor model also
performed well (R*=0.81, RMSE=90.77g). Conversely, the
Neural Network exhibited higher errors (N.S.), with an RMSE of
106 g and an MAE of 79.11 g. On the holdout data, Tukey HSD
test revealed no significant differences between models (ANOVA:
F=17,p = 0.15).

Hyperparameter tuning (Table 2) slightly improved the XGBoost
model performance on the holdout data, increasing R? from
0.807 to 0.81. To assess whether the tuning process improvement
was statistically meaningful, we tested the tuning performance
across 21 different random seeds, each resulting in a different
holdout set. For each subset, we compared model performance
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FIGURE 5 | Random forest model evaluation on five holdout ex-
periments (A) Histogram distribution of daily transpiration measured in
the holdout data. (B) Goodness of fit for the Random Forest model
predictions, comparing predicted against observed values. The dashed
grey line represents an exact fit (Y =X), indicating where the model's
predictions perfectly match the observations. The R* and the associated p
value are stated on the graph to indicate the strength and significance of
the relationship. (C) Residuals (observed minus predicted values) plotted
against predicted values to assess any systematic deviations from the
model. Higher values, which are less frequent as shown in (A), exhibit
increased scatter and reduced correlation, as illustrated in (B) and (C).

with and without hyperparameter tuning. There was no signifi-
cant difference between the untuned and tuned models (RMSE
difference of 0.19 g, paired t-test p = 0.63; Figure S6).

3.3 | Model Performance on Independent
Greenhouse and Growth Room Experiments

To test the generalisability of our models, we evaluated them on
two independent data sets: one from an externally operated
greenhouse in Tel Aviv, and one from our controlled growth
room (room 101). The Tel Aviv facility uses the same platform
but is operated by a different team and follows independent

experimental procedures, while room 101 provides a distinct
indoor environment managed by our own research group. For
each experiment, a representative plant was selected to evaluate
the models. For more details, see Section 2.10.

The models showed good performance on tomato plants across
both sites. In Tel Aviv, the Random Forest model achieved an
R? of 0.71, while in room 101 it reached 0.76, with lower RMSE
in the latter. For cereal plants in Tel Aviv, XGBoost achieved
the lowest RMSE (58.12 g), but the R2 was only 0.33, indicating
less consistency in capturing variability.

3.4 | Feature Importance

Feature importance was assessed through various techniques.
For tree-based models, impurity metrics were employed, per-
mutation and SHAP values were used. Interestingly, plant bio-
mass and temperature were identified as crucial predictors for
transpiration (Figure 6A) and the SHAP feature importance test
(Figure 6B) on the Random Forest model predicting transpira-
tion. The horizontal spread of dots for each feature indicates the
range of SHAP values, with a wider spread denoting greater
impact variability on model output. Colour signifies feature value
magnitude, with red indicating high and blue indicating low
values. Plant biomass, temperature and potting media are the
most influential features in predicting transpiration, as evidenced
by the wider spread of SHAP values, indicating a stronger effect
on model predictions. In contrast, VPD and DLI show a narrow
spread with randomly distributed colours, suggesting a small and
uniform influence on model output. Divergent colour patterns in
potting media reveal varying impacts on predictions, with soil
(encoded as 1) increasing transpiration and sand (encoded as 0)
decreasing it. Furthermore, the cereal plant type (encoded as 1) is
associated with reduced transpiration, while the tomato (encoded
as 0) contributes to increased transpiration.

To further evaluate the contribution of individual predictors, we
conducted ablation analyses in which plant biomass or tem-
perature was removed (Table 6). Excluding plant biomass,
identified as the most important feature, caused the largest drop
in performance, with holdout R? decreasing from 0.81 to 0.27
and RMSE increasing from 90.77 to 176.88 g. To test whether
plant age could serve as a coarse proxy for size, we added this
variable based on its correlation with plant biomass (r=0.7,
Figure S1A). However, because plant age was imprecisely
recorded due to arbitrary initialisation in the database, it only
partially recovered model accuracy (R? = 0.49, RMSE = 147.61
g). Excluding temperature had a more moderate impact
(R2 =0.79, RMSE = 95.26 g). A minimal-predictors model using
only plant biomass, temperature and soil type retained rela-
tively high performance (R2 = 0.75, RMSE = 103.44 g).

3.5 | Holdout Data Splitting Methods

In this section, we assess the robustness of our data analysis
using three distinct partitioning strategies: temporal splits,
greenhouse-based splits and random experiment-based splits.
These methods help us evaluate how reliable is our data and
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TABLE 4 | Model evaluation statistics on the holdout experiment data.

Relative
Model R? RMSE (g) MAE error® (%) Residual® (g) Residual® (%) Tukey HSD®
Decision Tree 0.77 98.65 75.53 64.71 75.53 64.71 a
Random Forest 0.81 90.77 69.71 60.12 69.71 60.12 a
XGBoost 0.82 88.41 66.71 57.37 66.71 57.37 a
Neural Network ~ 0.74 106.00 79.11 64.60 79.11 64.60 a

Note: Different letters indicate significant difference in Tukey HSD test p < 0.05. If all models share the same letter (e.g., “a”), this indicates that there were no significant

differences among models.

#Relative error, also known as the Relative RMSE, is a measure that quantifies the accuracy of predictions relative to the scale of the actual values. It is calculated as the

RMSE divided by the mean of the actual values.
The mean absolute residual was calculated.
“Tukey test on the residuals between the predicted and actual values.

(A) 1 5 OBuiltin
@ Permutation
] 0.8 -
c OSHAP
Eo
g& %07
€
< E 04 1
S o
2 c
3 0.2 A |:| | |
w
0
; N
F & PSS
<
& %@ &
X N N N
\? T L <
Q
(B) High
Plant biomass o wone oo
Temperature -
Potting media o
=
Plant type S
=
RH o oume E
3
DLI w
VPD
-400 -200 0 200 400 600 800
SHAP value (impact on model output) Low
FIGURE 6 | Feature importance contribution to the model predic-

tion accuracy. Plant biomass and temperature have a high importance
overall. Testing feature significance in Random Forest model. (A)
Feature importance using built-in impurity test (grey), permutation
(black) and SHAP values (white). y-axes are the feature importance
scores normalised by a Min-Max scaling method; a high score is given to
the more influential features. (B) SHAP presentation of Feature
importance. Every observation has one dot in each row. The position of
the dot on the x-axis is the impact of that feature on the model's pre-
diction for the observation, and the colour of the dot represents the
value of that feature for the observation. A larger spread of dots suggests
that the feature has a more significant impact on the model's predic-
tions. [Color figure can be viewed at wileyonlinelibrary.com]

how well our models perform across different timeframes, en-
vironmental conditions and experimental setups.

For data partitioning, the temporal split involved segregating
data by leaving out a different year for each iteration, using
the remaining years for training. This approach allowed us to
assess the model's ability to adapt to temporal variations. The

greenhouse-based split used data from one greenhouse for
training and testing, while data from another was held out,
enabling evaluation of model generalisability across different
greenhouse environments. In the random experiment-based
split, experiments were randomly selected as holdouts, with
the remaining used for training, aiming to gauge the model's
robustness across diverse experimental setups. R scores
analysis indicated no significant performance differences
among the splitting methods: temporal split scored approxi-
mately 0.54 (median: 0.65), random experiment-based split
achieved a mean of 0.62 (median: 0.60) and greenhouse-based
split averaged 0.62 (Figure 7; Welch's test: F=0.68, p = 0.53).
Notably, variations in the random seed introduced considera-
ble variability in the randomly selected holdout sets, while
changes across different years also added diversity.

4 | Discussion

In this study, we explored the dynamics of daily transpiration in
well-irrigated plants using advanced machine learning models.
Our unique data set, collected over 7 years, included high-
resolution physiological traits and meteorological measurements
from two greenhouses. Our findings indicate that our ML mod-
els, particularly Random Forest and XGBoost, showed respect-
able performance in predicting daily transportation. In addition,
both SHAP and feature importance scores revealed that plant
biomass and daily mean temperature are the most influential
factors in these predictions. This discussion addresses these
findings and their potential applications in agriculture.

4.1 | Seasonal Environmental Effects on Plant
Biomass and Transpiration

Figure 4 highlights the distinct environmental parameters ex-
perienced by summer tomato and winter cereal, as well as the
significantly higher daily transpiration of the tomatoes. Inter-
estingly, the plant biomass (Figure 4A5) of cereals was signifi-
cantly higher than that of tomatoes, with averages of 148.67 and
111.54 g, respectively. This result was unexpected, given the
common correlation between larger annual plant size—which
is closely related to transpiring leaf area (Halperin et al. 2017)—
and higher transpiration rates (Figure 4B; Transpiration-Plant
biomass; r=0.6). However, this discrepancy highlights how
seasonal environmental variations can influence transpiration.
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FIGURE 7 | Comparing data splitting methods for holdout data set.
The distribution of R? scores for a tuned random forest model, evaluated
using three distinct data splitting methods. The ‘Year’ method separates
the data chronologically, training on observations from 6 years while
holdout data were from one excluded year, repeatedly applied across all
available years. The ‘Random’ method involves randomly selecting
entire experiments as the holdout data set. Different random seeds lead
to varied holdout experiments, resulting in a broad range of scores. The
‘Greenhouse’ method uses data from the main greenhouse for training
and data from a secondary, different-sized greenhouse for testing.

4.2 | Model Performance and Accuracy

The effectiveness of ML models in predicting daily transpiration
was tested. The tuned models were trained and evaluated using
10-fold cross-validation. Random Forest and XGBoost performed
similarly, with XGBoost being seven times faster (Table 3). The
XGBoost model achieved an RMSE of 85.19 g with an R*>=0.89.
Neural Networks had comparable accuracy but much longer
runtimes

Testing our model on a holdout data set, to further validate our
model accuracy and generalisability. The XGBoost model
demonstrates the strongest performance in predicting the daily
transpiration (R*>=0.82, RMSE = 88.41g), with no significant
difference in the residuals between the XGBoost and the Ran-
dom Forest models.

Interestingly, although hyperparameter tuning (Table 2) im-
proved model performance slightly, testing tuning impact across
different random seeds revealed that the improvement was not
statistically significant on the holdout data (Figure S6). This lack
of consistent performance gain may be due to the model already
being well-calibrated with its default parameters, the limited
benefit of tuning given the available feature set, or potential
overfitting to the training data during the tuning process.

Our results align with other ML models that have predicted
actual transpiration. For instance, Amir et al. (2021) reported
that their Random Forest model had R? = 0.81, when predicting
sap flow in cherry tomatoes. Similarly, Fan et al. (2021)
achieved R2 values from 0.816 to 0.95, using sap flow data from
maize. Ohana-Levi et al. (2020) got R2 values of up to 0.90 when
predicting grapevine water consumption using drainage lysim-
eter data. Pagano et al. (2023) present a table summarising

several studies that predicted actual transpiration, with an
average maximum R? of 0.87 for these predictions. We propose
that the accuracy of our models (R* = 0.81-0.89) can be attrib-
uted to the precision of our transpiration measurements, the
size of our data set, and the specific features used during model
training (Table 1). Overall, these findings validate the possibility
of using ML models to predict daily transpiration.

Testing our models on other experimental setups, demonstrate
the models practical application and external validity in inde-
pendent environments (Table 5). This external validation pro-
vides meaningful insights into the robustness, consistency and
adaptability of our models under varying conditions. Notably,
the optimal model differed depending on the plant type and
environment. For tomato plants grown in both the Tel Aviv
greenhouse and our controlled growth room (Room 101), the
Random Forest model outperformed others, achieving R2 values
of 0.71 and 0.76, with corresponding RMSE values of 81.38 and
59.58 g, respectively. These results are consistent with the
strong performance observed in our holdout experiments (see
Figure 5), reinforcing the model's reliability. In contrast, for
cereal plants grown in Tel Aviv, the XGBoost model demon-
strated the lowest RMSE (58.12 g), suggesting high predictive
precision. However, the relatively low R? of 0.33 indicated that,
while the model's predictions were close in absolute terms (low
RMSE), they did not align well with the variation in actual
transpiration values—suggesting that the model failed to ex-
plain the full range of responses observed in the cereal plants.
This may be due to the lower representation of cereal data (2140
observation vs. 3975 for tomato) and the narrower range of
environmental condition under which cereal were grown, as
evidence in Figure 4A (temperature and DLI) which show
reduce variability for cereal compared to tomatoes. This diver-
gence in model performance across plant types and conditions
emphasises the importance of model selection tailored to spe-
cific experimental contexts.

We suggest that future work should expand the quantity and
variability of our labelled data sets by periodically pooling
standardised data from additional lysimeter installations. This
would enhance model robustness and enable validation across a
broader range of crops and climatic conditions. As this global
data set matures, it may become necessary to develop a simple
calibration factor—analogous to the FAO-56 crop coefficient—
to harmonise measurements across different systems.

4.3 | Key Factors Influencing Transpiration

Artificial Intelligence models are often considered ‘black boxes’
due to their complexity, consideration of multiple parameters
and the intricate statistical calculations involved in their algo-
rithms (Azodi et al. 2020). Feature importance analysis enables
us to understand the strength of each feature in the model's
predictions and in the transpiration processes.

Our Feature importance analysis indicates that plant biomass
plays the most significant role in predicting daily transpiration
(Figure 6). We find this result very rational as the correlation
between plant biomass and transpiration is well known (Lambers
et al. 2008; Lazar 2003). As larger plants have more leaves (and
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thus more stomata) leading to more water loss. Similarly, other
studies have found that canopy size in olives (Sperling et al. 2023)
and plant height in maize (Z. Chen et al. 2020) are crucial
factors. In addition, leaf area index has been effectively used in
other studies to predict sap flow (Balasubramanian and
Thirugnanam 2023), or grapevine water consumption (Ohana-
Levi et al. 2020) highlighting the broader applicability of leaf and
plant size in transpiration models.

We also tested whether plant age could serve as a proxy for plant
biomass, as higher transpiration rates are often observed during
late vegetative stages (Grulke and Retzlaff 2001; Juarez-Lopez
et al. 2008). However, in our data, the correlation between plant
age and transpiration is weak (days-transpiration; r=0.38,
Figure S1), primarily due to inconsistencies in age recording: All
plants were assigned ‘day 1’ at the start of logging, regardless of
their true developmental stage. Nevertheless, including plant age in
the ablation model partially recovered accuracy compared to the
excluded-plant-biomass model (R? increasing from 0.27 to 0.49;
RMSE decreasing from 176.88 to 147.61 g; Table 6), indicating that
age does contain useful information despite its limitations.

Although direct measurement of plant biomass may not be
practical in large-scale field applications, our findings suggest
that accurately recorded plant age could serve as a practical
alternative or complement. Future work could explore remote
sensing or image-based methods as scalable alternatives to
integrate plant size metrics into transpiration models.

VPD integrates the effects of both temperature and RH, with the
literature often treating them as equally influential on transpira-
tion. However, these two environmental factors not only interact
reciprocally—such that a rise in temperature typically coincides
with a decrease in RH, and vice versa—but also have distinct
direct impacts on plant physiology. For example, while RH

primarily affects the atmospheric demand for water vapour, tem-
perature directly influences enzymatic activity and metabolic
processes within the plant. As a result, separating the independent
contributions of temperature and RH to transpiration responses is
challenging. Although VPD has traditionally been considered a
key factor influencing stomatal conductance and overall plant
transpiration (Song et al. 2022; Tanny 2013; Zhou et al. 2019),
several studies have acknowledged the difficulty of disentangling
these interdependent drivers (Bunce 2006; Grossiord et al. 2020),
often focusing on VPD as the primary determinant of water loss
rather than parsing the relative roles of its components. Against
this backdrop, the findings from this study indicate that temper-
ature exerts a greater influence than RH.

In fact, temperature was the second most important factor in
our feature importance hierarchy, making it our most critical
environmental predictor of daily transpiration (Figure 6). This
aligns with its previously observed effects on physiological pro-
cesses, as high temperatures drive transpiration by increasing
water vapour pressure (Aschale et al. 2023; W. Liu et al. 2020). In
addition, it directly affects the physiological responses of plants,
such as stomatal conductance (Haijun et al. 2015). Some re-
searchers even found temperature to be the most critical factor
influencing evapotranspiration (ET0), especially in spring and
summer season when it contributes to as much as 46% of the
variance of ETO (Aschale et al. 2023; W. Liu et al. 2020).
Nevertheless, our results suggest that temperature alone may
have a much stronger effect than RH. Thus, the high feature
importance assigned to temperature in our model may indicate
its predominant role in controlling transpiration, independent of
the RH component of VPD. Notably, excluding temperature from
the feature set had only a minor effect on model performance
(Table 6), possibly because its influence is partially captured by
the correlated VPD and RH variables. Further studies are needed
to confirm and clarify this distinction.

TABLE 5 | Model performance on independent greenhouse experiments using the model testing app.
Greenhouse facility Dates Plant ID Plant type Best Model RMSE (g) R?
Tel Aviv 15/07/2024-31/07/2024 2366 Tomato Random forest 81.38 0.71
Tel Aviv 02/10/2024-16/11/2024 2470 Cereal XGBoost 58.12 0.33
Room 101 13/09/2024-08/10/2024 638 Tomato Random forest 59.58 0.76
TABLE 6 | Random forest model performance for daily transpiration prediction using alternative input sets.
Model Test set Holdout set
Name X variables R? RMSE (g) R? RMSE (g)
Baseline model ['VPD’, ‘Temp’, ‘RH’, ‘DLI’, ‘encoded_plant’, 0.88 86.93 0.81 90.77
‘encoded_soil’, ‘plant biomass’]
Plant biomass excluded model ['VPD’, ‘Temp’, ‘RH’, ‘DLI’, ‘encoded_plant, 0.78 119 0.27 176.88
‘encoded_soil’]
Age-based model ['VPD’, ‘Temp’, ‘RH’, ‘DLI’, ‘days’, 0.827 105.4 0.49 147.61
‘encoded_plant, ‘encoded_soil’]
Temperature excluded model [‘VPD’, ‘RH’, ‘DLI’, ‘encoded_plant’, 0.86 91.8 0.79 95.26
‘encoded_soil’, ‘plant biomass’]
Minimal-predictors model [‘Temp’, ‘plant biomass’, ‘encoded_soil’] 0.809 111.02 0.75 103.44
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Potting media is the third most important feature (Figure 6B).
SHAP analysis showed that potting media are completely sepa-
rated, and sand (blue) has negative effect on the transpiration
compared to the soil (red). This is due to differences in water
availability, as soil typically retains more water than sand, leading
to higher transpiration in plants grown in soil (Cai et al. 2024).

We were surprised to find that plant type had a relatively low
importance in predicting transpiration (Figure 6A). Genotype
by Environment (GXE) interactions suggest that different crops
like tomatoes and cereals, with potential variations in stomatal
density, would influence transpiration rates (Des Marais
et al. 2013; Fournier-Level et al. 2011). A possible explanation is
that the model may identify plant type indirectly through
biomass (Figure 4A5, Figure 6A). However, if the model's
assessment holds, it could signal a ground-breaking insight into
the plant transpiration prediction.

The low importance score of the DLI was unexpected, as it
contradicts the common understanding of the high significance
of solar radiation (Tanny 2013). It is possible that in indirect
models based on eddy covariance (Pagano et al. 2023) and
FAOS56 estimation (Basagaoglu et al. 2021), radiation plays a
more crucial role, whereas in models using direct measure-
ments such as sap and lysimeters (current article), its impor-
tance may be less pronounced. Another consideration is that
daily averaging might diminish the perceived importance of
light, while more granular data collected at hourly or minute
intervals may reveal its greater significance (as in these works:
Kiraga et al. 2023; Li et al. 2020).

Future studies should explore the use of more granular data,
such as hourly or minute-level measurements, instead of
daily averages, to better capture the influence of all mete-
orological parameters on transpiration. Daily averaging can
obscure the dynamic effects of factors like solar radiation,
temperature and humidity, potentially underestimating their
true importance. By analysing shorter time intervals, re-
searchers may uncover stronger correlations between these
variables and transpiration, providing a clearer under-
standing of their interactions.

It is important to note that soil water content, ambient CO,
concentration and wind speed were maintained at non-stress or
quasi-steady levels during the experiments (see Section 2) and
were therefore not included as predictors. Because these vari-
ables are known to influence transpiration, future work should
broaden the set of independent drivers and incorporate their
dynamic behaviour into the machine-learning framework and
model training.

We suggest that future elaboration and integration of additional
ambient variables (such as CO, concentration, wind speed, soil
electrical conductivity and soil water content) should be
incorporated into the methodological framework proposed
here. These factors exert direct, indirect and interactive effects
on plant behaviour, and their inclusion could improve both the
resolution of hierarchical environmental controls on whole-
plant transpiration and the accuracy of transpiration prediction
across a wider range of environmental conditions and growth
systems.

4.4 | Splitting Methods

Splitting the data into train and validation sets can significantly
impact model performance and generalisability (Shi et al. 2022).
We explored three distinct data sampling methods: year
(temporal), random and greenhouse (spatial). Although the
models’ accuracy results did not show a significant difference
between them, each method offered unique insights into the
data strengths and the models’ ability to accurately predict
transpiration (Figure 7). The year split had a median accuracy
(R®) of 0.65, impacted by greenhouse differences, equipment
ageing and yearly meteorological variation. Random sampling
yielded a median accuracy of 0.60, with a broader variation.
Greenhouse-based splitting achieved 0.63, as the model effec-
tively predicted transpiration in the secondary greenhouse
using data from the main one, suggesting good generalisability
across similar coupled setups.

4.5 | Future Applications and Model-Based
Decision Support

In this study, we demonstrated that machine learning models
can achieve respectable predictive performance using only a
small number of input features. Moreover, the feature impor-
tance analysis reveals that the model's internal weighting aligns
well with established physiological drivers of transpiration,
reinforcing both its predictive value and biological relevance.

Future research should prioritise expanding the diversity, res-
olution and temporal coverage of environmental and physio-
logical data by integrating advanced sensors for continuous
spatiotemporal monitoring. This will enhance our ability to
model dynamic plant-environment interactions with greater
accuracy. In addition to improving prediction, AI models may
enable early detection of suboptimal plant behaviour and stress
responses, supporting proactive decision-making in precision
agriculture. These future models are particularly valuable for
disentangling multifactorial influences, such as the overlapping
yet distinct effects of temperature and humidity, and for
revealing non-intuitive interactions that might be overlooked in
traditional analyses. Identifying the most influential variables
also enables the strategic use of low-cost sensors in data-driven
irrigation and environmental control systems. As data sets ex-
pand and model accuracy improves, predictions may increas-
ingly rely on ambient measurements alone, with lysimeters
serving primarily as initial calibration references. Ultimately,
physiology-informed ML models can support scalable, sensor-
efficient and predictive crop management, bridging funda-
mental understanding with real-world implementation.
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