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Abstract
Soil salinity poses a global threat to crop production. Early understanding of plant physiological responses to salinity stress 
can be critical to implementing timely stress management strategies. One of the initial plant physiological responses to 
salinity is a reduction of transpiration. This study used papaya as a model crop to better understand the effect of salinity 
on whole-plant transpiration using a greenhouse experiment. Treatments consisted of four electrical conductivity (EC_IR) 
levels of irrigation water: ~ 0 (tap water), 2, 4, or 8 dS m− 1 were considered for the experiment. An automated phenotyp-
ing platform measured whole plant transpiration from the time of papaya transplanting until they reached approximately 
15 weeks of age. Five machine learning models: extreme gradient boosting (XGBt), categorical boosting (CATBt), light 
gradient boosting (LAGBt), random forest (RF), and decision tree (DT) were fitted to the transpiration data and machine 
learning algorithms were deployed on a new data set. The impact of salinity on transpiration started to become evident 16 
days after initiation of salinity treatments, where only the 8 dS m− 1 treatment induced a significant decline in transpira-
tion. All machine learning models efficiently captured salinity-induced impacts on transpiration. The use of salinity as an 
input feature improved the performance of all machine learning models. Salinity contributed up to 32% to the predictive 
capability of the machine learning models by improving the R2, root mean squared error (RMSE), and mean absolute 
error (MAE) of the machine learning models up to 19, 25, and 25%, respectively. Overall, the extreme gradient boosting 
model outperformed all the machine learning models. Furthermore, deployment of machine learning algorithms to a new 
data set effectively indicated a critical level of EC_IR of 6 dS m− 1 on whole-plant transpiration above which transpiration 
significantly drops. Apart from transpiration the effect of salinity on biomass, the concentration of Na+ and Cl− contents in 
leaves and roots were evident. Overall, machine learning models can be useful tools for capturing salinity-induced impact 
on plant water use and its integration with crop stress management practices could be valuable.

Keywords  Salinity stress · Automated phenotyping platform · Extreme gradient boosting · Categorical boosting · Light 
gradient boosting, decision tree, and random forest
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Introduction

Soil salinity is among the main abiotic factors affecting 
agriculture worldwide causing major crop losses and sig-
nificantly reducing agricultural productivity (Majeed and 
Muhammad 2019). Currently, 20% of the total cultivated 
land and 33% of irrigated agricultural lands are affected by 
high levels of soil salinity. Moreover, there is an estimated 
10% annual increase in salinized agricultural areas world-
wide (Chele et al. 2021; Shrivastava and Kumar 2015). 
Several reasons are contributing to such a high annual rate 
of increasing soil salinity such as rising sea levels and salt-
water intrusion, overuse of chemical fertilizers, low precipi-
tation, high evaporation, and irrigation with saline water 
(Chele et al. 2021; Nicolas et al. 2023; de Souza et al. 2024). 
Soils are classified as saline when the electrical conductivity 
(EC) of saturated extract from the root zone exceeds 4 dS 
m− 1 and sodic when there is an exchangeable sodium per-
centage of 15% (Shrivastava and Kumar 2015). Evaporation 
of water from saline soils causes the precipitation of salts, 
predominantly Na+ and Cl− ions, and nutrient imbalances in 
the root zone, leading to salt uptake by the roots and con-
sequent stunting of plant development at all stages (Chele 
et al. 2021). Multiple studies highlight the severe and mul-
tifaceted impacts of soil salinity on agricultural productiv-
ity. For instance, Nicolas et al. (2023) evaluated the effects 
six irrigation water salinity levels (0.5 to 5.5 dS m− 1) on 
the yield of alfalfa, almonds, grapes, and tomatoes in sandy 
loam soils of North America. Their results indicated the 
negative impact of salinity levels of 5.5 dS m− 1, decreas-
ing the yield of alfalfa, almonds, grapes, and tomatoes by 
up to 10%, 45%, 18%, and 12%, respectively (Nicolas et 
al. 2023). Similarly, Stavridou et al. (2017) investigated the 
impacts of soil salinity on stomatal conductance and dry 
matter yield of the perennial grass. Their findings demon-
strated a significant decline in stomatal conductance and dry 
matter yield by up to 56% for soil salinity levels over 5 dS 
m− 1. Likewise, de Souza et al. (2024) tested the influence 
of six soil salinity levels on plant growth, and physiological 
and nutritional responses of ‘Red Lady’ papaya plants in an 
inert calcined clay (Turface®) potting medium. Their results 
indicated a decline in stomatal conductance and transpira-
tion by up to 63 and 52% respectively at soil salinity levels 
of 6 dS m− 1.

A decline in plant transpiration, is one of the initial phys-
iological responses to salinity stress, which can be easily 
captured at the whole-plant level using tools such as high-
throughput physiological phenotyping platforms that gen-
erate dynamic and intensive datasets of plant transpiration. 
Such intensive datasets are ideal for machine learning mod-
els that employ various learning algorithms to understand 
the complex and nonlinear relationship between the input 

and target variables, which can be a viable alternative to 
model salinity effects on crop physiology. For example, Fan 
et al. (2021) tested the applicability of four machine-learning 
models, Support Vector Machine (SVM), Extreme Gradient 
Boosting (XGBt), Artificial Neural Network (ANN), and 
Deep Neural Network (DNN) models in simulating daily 
transpiration of maize. Their result suggested that the addi-
tion of soil water content and leaf area index significantly 
improved the performance of machine learning models for 
simulating daily transpiration. They highlighted the effec-
tiveness of DNN models in simulating daily maize transpi-
ration due to their competitive advantage in modeling the 
complex relationship between transpiration and its driving 
factors (Fan et al. 2021). Furthermore, several studies suc-
cessfully simulated plant evapotranspiration using machine 
learning models (Du et al. 2024; Fan et al. 2021; Guo et al. 
2024; Hailegnaw et al. 2024; He et al. 2024; Lee et al. 2024; 
Li et al. 2020; Wang et al. 2024).

Understanding salinity-induced plant water use and 
transpiration responses using continuously measured data 
from systems like the Plantarray (Plant-DiTech Ltd., Yavne, 
Israel; PDT) – a high-throughput, multi-sensor physiologi-
cal gravimetric phenotyping platform – offers significant 
benefits. Integrating this data with machine learning ana-
lytics could give a better understanding and prediction of 
plant transpiration changes to gauge salinity stress. The 
primary goal of this study was to leverage the capabilities 
of the Plantarray system to gather large datasets, enabling 
a more in-depth analysis of plant responses to salinity. By 
employing machine learning algorithms, we aimed to gain 
a better understanding of the trends and patterns in the data, 
ultimately leading to improved insights into how plants 
respond and adapt to increased soil salinity.

Materials and methods

Experimental setup

A study was conducted in a greenhouse at the University of 
Florida, Tropical Research and Education Center in Home-
stead, Florida, USA (25.5°N longitude and 80.5°W latitude) 
from September to November 2022 to assess the impacts of 
salinity on whole-plant transpiration through machine learn-
ing. Papaya plants (Carica papaya L.) cultivar Red Lady 
grown in Turface® were used as a model system because a 
recent study (de Souza et al. 2024) determined the amount 
of salinity that negatively affected transpiration and caused 
salinity stress of this species in this potting medium. Papaya 
seeds were germinated in flats in Promix® potting medium 
(Premier Tech, Quebec, Canada) and ~ 6 weeks after ger-
mination seedlings were then transplanted to pots that were 
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part of a high-throughput physiological phenotyping plat-
form (Plantarray, Plant-DiTech Ltd., Yavne, Israel; PDT) 
for constant monitoring of plant water use and transpiration 
and to precisely control irrigation scheduling. After a week 
of transplanting, salinity stress treatments were started at 4 
different irrigation water electrical conductivity levels (0, 
2, 4, and 8 dS m− 1). In this manuscript the word salinity 
has been used interchangeably with electrical conductivity 
of irrigation water (EC_IR). A description of the PDT phe-
notyping platform is provided by Halperin et al. (2017) and 
the experimental setup is described in detail for a similar 
study by de Camargo Santos et al. (2024). The PDT sys-
tem is composed of 3.9-L pots, each placed on top of highly 
accurate (± 10 g) and temperature-compensating lysimeter 
(Tadea-Huntleigh, model 1042 C4; Vishay Intertechnology, 
Malvern, PA, USA). Each pot had a sensor (model 5 TE, 
Meter Group, Pullman, WA, USA) for measuring soil water 
content and electrical conductivity. Each pot was irrigated 
with a drip irrigation system connected to a controller that 
controls the irrigation schedules for each plant individually. 
Data were downloaded every 3 min to a datalogger (model 
CR 1000, Campbell Scientific, Logan, UT, USA) and sent 
to a server in real-time (SPAC Analytics - Plant-Ditech Ltd., 
Yavne, Israel). The system was installed in a climate-con-
trolled greenhouse with a weather station (WatchDog 2800 
Weather Station, Spectrum Technologies, Inc., Aurora, IL, 
USA) that continuously monitored and recorded daily varia-
tions in photosynthetically active radiation (PAR) and vapor 
pressure deficit (VPD). Temperature in the greenhouse 
ranged from 24 to 32 °C and relative humidity ranged from 
60 to 80% during the experiment.

A 1:1 (v/v) mixture of Turface MVP® and Turface Profile 
Greens Grade® (Profile Products LLC, Buffalo Grove, IL, 
USA), an inert calcined clay oven-dried for 48 h, was used 
as the growing medium. The gravimetric water content of 
the saturated substrate was 0.77 g g− 1 or 77%, and 0.60 g 
g− 1 or 60% after drainage (field capacity). A layer of 300 
cm3 of 6 mm plastic beads was placed on top of the substrate 
to prevent any water loss by evaporation, thus enabling 
accurate water mass balance calculations and estimates of 
whole-plant transpiration. The irrigation regime was pro-
grammed to occur during the night, between 23:00 and 
02:00 h, in 2–3 sequential pulses scheduled every 30 min to 
avoid the confounding effects of water use during the day. 
Plants were irrigated with a fertigation solution consisting 
of a Hoagland’s solution (Hoagland and Arnon 1950).

Experimental design

Papaya seedlings were divided into four treatments consist-
ing of four EC_IR levels corresponding to ~ 0 (tap water 
with not salt added), 2, 4, or 8 dS m− 1 achieved by adding 

different amounts of artificial sea salt (Instant Ocean®, 
Aquarium Systems, Blacksburg, VA, USA) (​h​t​t​p​​s​:​/​​/​w​w​w​​
.​i​​n​s​t​​a​n​t​o​​c​e​a​​n​.​c​​o​m​/​​p​r​o​​d​u​c​t​​s​/​​s​e​a​​-​s​a​l​​t​-​m​​i​x​e​​s​/​s​​e​a​-​​s​a​l​t​​-​m​​i​x​t​u​
r​e​.​a​s​p​x) to the irrigation water to obtain the desired ​E​C​_​
I​R​. There were eight single plant replicates per treatment 
arranged in a randomized complete block design.

Physiological assessment and biomass 
measurements

Whole-plant continuous physiological measurements were 
obtained from the PDT system. Daily whole-plant tran-
spiration was determined for each plant by calculating the 
difference between the system’s start and end-of-the-day ref-
erence points obtained for each individual lysimeter. These 
reference points were obtained by averaging the lysimeter’s 
readings over a 30-min period, between 05:00 and 05:30 h 
for the start-of-the-day, and between 21:00 and 21:30 h for 
the end-of-the-day. Whole-plant transpiration (plant-Tr) and 
root water uptake were calculated from the lysimeter and 
soil sensor readings (according to the substrate volume) tem-
poral series as described by Halperin et al. (2017). In short, 
those variables were determined by multiplying the deriva-
tive of the initial recorded measurement time series by − 1. 
The average of measurements recorded from 11:00–13:00 h 
were used to calculate the midday transpiration rate and root 
water uptake. Then the transpiration efficiency (g(dry weight) 
L− 1) was calculated as the ratio of papaya biomass (g) and 
cumulative transportation (L) (Kemanian et al. 2005).

Plants were harvested 50 days after stress imposition 
(DAS) and tissues were separated into shoot and root por-
tions, dried in an oven at 60 °C until they reached a constant 
mass. Dried tissue samples were ground to a fine powder in 
an electrical blender. Leaf and root Cl contents were deter-
mined by extraction in water and titration with silver nitrate 
(Malavolta et al. 1997). Leaf and root Na+ concentrations 
were determined at the University of Florida, USA, Ana-
lytical Research Laboratory in Gainesville, Florida, where 
Na+ content was determined by inductively coupled plasma 
emission spectrometry (Hanlon et al. 1994).

Machine learning models

The machine-learning models utilized in this study included 
five different algorithms: eXtreme Gradient Boosting Trees 
(XGBt), Decision Trees (DT), Random Forest (RF), Cate-
gorical Boosting Trees (CATBt), and Light Gradient Boost-
ing Machine (LAGBt). Python version v3.14 wasused to 
develop all machine learning models. A total of 22,363 data 
points collected from plant array system were used for all 
machine learning by grouping 70% to training and 30% to 
the test set. Therefore, all models have been trained with 
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obtaining the best weight for training and improving the 
predicting capability of the algorithm (Tahraoui et al. 2022).

Evaluation of developed machine learning 
algorithms

Simulated experiments with 9 treatments (0, 1, 2, 3, 4, 
5, 6, 7, and 8 dS m− 1) were developed using a 15-minute 
interval of weather data comprising 36,801 observations 
from a weather station located in the same greenhouse, 
salinity levels randomly assigned in 3 replications to the 
data. These data included parameters used for the develop-
ment of machine learning algorithms, such VPD and PAR. 
Afterward, the developed machine learning models were 
imported directly into Jupiter notebook and fitted with the 
newly prepared data set to predict whole-plant transpiration 
(Fig. 1).

Statistical analysis

Tukey’s Honest Significant Difference (HSD) test was 
applied to identify pairwise significant differences between 
different levels of electrical conductivity. A p-value of 
< 0.05 was considered statistically significant unless other-
wise stated. The statistical analysis and figures were gener-
ated using Python 3.

70% of the observed data and tested with the remaining 30% 
of the observed data. The RandomizedSearchCV hyperpa-
rameter optimization method was used to randomly search 
over a specified grid of hyperparameters and find the best 
combination for the model. It efficiently explores a wide 
range of hyperparameters without the exhaustive computa-
tion required by GridSearchCV technique. The evaluation 
criteria used for the models are R2: Coefficient of determi-
nation, RMSE: Root Mean Squared Error and MAE: Mean 
Absolute Error.

Extreme gradient boosting (XGBt) is a powerful 
machine-learning model known for its scalability, flexibil-
ity, and efficiency. It employs advanced techniques such 
as row and column sampling to address common overfit-
ting issues encountered in machine learning. XGBt takes 
advantage of first and second-order statistics to effectively 
optimize the loss function (Zhang et al. 2021). A categori-
cal boosting (CATBt) is a supervised machine learning in 
the family of gradient-boosting decision tree models that 
is capable of handling both classification and regression 
problems (Hancock and Khoshgoftaar 2020). Light gradi-
ent boosting (LAGBt) combines the idea of boosting with a 
decision tree type of modeling. It is ideally different than the 
extreme gradient boosting in its way of handling the algo-
rithm training to speed up the process (Ke et al. 2017). Ran-
dom forest (RF) is a type of supervised machine learning 
that can learn trends in data sets and therefore able to esti-
mate trends based on learning. It has good estimation accu-
racy as it integrates multiple decision trees. The algorithm 
constructs a tree by randomly selecting a subset of variables 
and then the estimation of trends will be generated by aggre-
gating the prediction of all trees (Breiman 2001). The deci-
sion tree (DT) model is known to handle both categorical 
and regression types of problems. The algorithm is known 
for its tree-like structure allowing it to take advantage of 

Fig. 1  Schematic diagram depicting the machine learning process including data preprocessing, training machine learning models, and production 
using algorithms
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In contrast, EC_IR is excluded for XGBt_2, CATBt_2, 
LAGBt_2, RF_2, and DT_2. As evidenced by all three sta-
tistical evaluations (R2, RMSE, and MAE), the inclusion of 
EC_IR as an input feature improved the efficiency of all the 
machine learning models (Fig. 3; Table 1).

As shown in Fig.  4, the density plot indicates that all 
machine learning models exhibit a slightly higher distribu-
tion in the transpiration range of 0.15 to 0.25 g water per 
plant per minute compared to the measured values and a 
slightly off distribution for transpiration above 0.4 g water 
per plant per minute. Additionally, within this range, models 
that do not account for salinity displayed a marginally higher 
distribution than their respective salinity-included counter-
parts. The inclusion of salinity in the models improved the 
performance of all machine learning models by increasing 
R2 up to 25% and decreasing RMSE and MAE up to 21 
and 23%, respectively. The substantial improvements in 
R², RMSE, and MAE indicate that salinity was indeed an 
important parameter in estimating plant transpiration. This 
was further confirmed by the feature importance analysis 
result of all models (Fig. 5). Salinity contributed to 29, 21, 
24, 28, and 32% to the predictive power of XGBt, CATBt, 
LAGBt, RF, and DT, respectively.

The distribution of transpiration, from measured data or 
data estimated by machine learning models (Fig.  6), fur-
ther indicated a better match between observed and pre-
dicted transpiration when salinity was considered (XGBt_1, 
CATBt_1, LAGBt_1, RF_1, and DT_1) compared to when 
it was not (XGBt_2, CATBt_2, LAGBt_2, RF_2, and 
DT_2). To our knowledge, there is no published scientific 
paper considering soil salinity in modeling plant transpira-
tion while several papers have highlighted the efficiency of 
machine learning models in estimating plant evapotrans-
piration under optimal conditions (Du et al. 2024; Fan et 

Results and discussion

Performance of machine learning models in 
capturing salinity-induced changes of papaya 
transpiration

The Plant-Ditech system allows for the continuous measure-
ment of plant transpiration at a 3-minute interval, providing 
highly detailed plant transpiration data. The effect of salin-
ity on transpiration began 16 days after salinity treatments 
were initiated (Fig. 2A). The EC_IR of 8 dS m− 1 signifi-
cantly decreased papaya cumulative transpiration by 53% 
compared to the control, whereas there was a 14% and 2% 
decline in cumulative transpiration in the 4 and 2 dS m− 1 
treatments, respectively (Fig.  2B). Cumulative transpira-
tion was negatively correlated with Na+ and Cl− contents 
in leaves (r = -0.78 and − 0.71) and roots (r = -0.82 and 
− 0.66). Salinity stress can reduce transpiration by interfer-
ing with root water uptake and due to the toxicity of salts (de 
Souza et al. 2024; Lu and Fricke 2023; Munns and Tester 
2008). A higher accumulation of salts in plant tissue triggers 
a reduction in transpiration in an attempt to conserve water 
and minimize further salt uptake (Peçanha et al. 2017).

Electrical conductivity of irrigation water negatively cor-
related with transpiration (r = − 0.26), confirming the nega-
tive impact of salinity on transpiration (Fig. 3). As expected, 
the day after planting, VPD and PAR were positively cor-
related with transpiration.

To evaluate the ability of machine learning models in 
capturing salinity-induced impacts on transpiration, two 
models were developed with and without salinity as an 
input feature. Four factors were selected for the first set of 
models: EC_IR, solar radiation, days after planting, and 
VPD (XGBt_1, CATBt_1, LAGBt_1, RF_1, and DT_1). 

Fig. 2  (A) Papaya transpiration as affected by variation in electrical conductivity of irrigation water (EC_IR) of 0, 2, 4, or 8 dS m− 1), (B) The effect 
of salinity on the cumulative transpiration of papaya as affected by salinity stress
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water to meet their evapotranspiration needs, reducing salt 
content, and flashing out salts from the root zone. Integrat-
ing plant transpiration data with an automated irrigation 
system that adjusts based on real-time or simulated plant 
transpiration rate will ultimately help mitigate the impact of 
salinity on plant growth and yield.

Model deployment

A precise identification of salinity levels that negatively 
affect plant physiology and growth is critical for effective 
salinity management. Understanding these levels allows 
for the determination of critical salinity thresholds that, if 
exceeded, could lead to adverse physiological responses in 
plants. Such information is vital for planning targeted inter-
ventions to protect crop health and optimize yields under 

al. 2021; Guo et al. 2024; Hailegnaw et al. 2024; He et al. 
2024; Lee et al. 2024; Li et al. 2020; Shao et al. 2022; Wang 
et al. 2024). For instance, Fan et al. (2021) indicated the 
efficiency of machine learning models such as XGBt with 
R2 value of 0.929.

The extreme gradient model outperformed all machine 
learning models by the overall consideration of R2, RMSE, 
and MAE (Table 1). A superior accuracy of the random for-
est model in estimating plant evapotranspiration was evident 
(Ge et al. 2022; Zhou et al. 2021). A similar better perfor-
mance of random forest over other machine learning mod-
els in simulating plant evapotranspiration is evident, which 
succeeded extreme gradient (Li et al. 2020). It is essential to 
accurately simulate plant transpiration to effectively develop 
crop stress management strategies. This helps combat the 
effects of salinity by ensuring that plants receive sufficient 

Table 1  Statistical evaluation of XGBt_1, CATBt_1, LAGBt_1, RF_1, DT_1, XGBt_2, CATBt_2, LAGBt_2, RF_2, and DT_2 on test data set
R2 RMSE (g/m) MAE (g/m) R2

rank
RMSE
rank

MAE
rank

XGBt _1 Rs,
VPD, DAP, EC_IR

0.828 0.0651 0.0444 1 1 1
RF_1 0.8256 0.0656 0.0447 2 2 2
DT_1 0.8098 0.0685 0.0467 3 3 4
LAGBt_1 0.8076 0.0689 0.0462 4 4 3
CATBt_1 0.8074 0.0689 0.0490 5 5 6
XGBt_2 Rs,

VPD, DAP
0.8071 0.0690 0.0473 6 6 5

RF_2 0.6934 0.0870 0.0599 7 7 7
LAGBt_2 0.6922 0.0871 0.0599 8 8 8
CATBt_2 0.6921 0.0871 0.0599 9 9 9
DT_2 0.6915 0.0872 0.0601 10 10 10
Rs: Solar radiation, VPD: Vapor pressure deficit, EC_IR: Electrical Conductivity of irrigation water, DAP: Day After Planting

Fig. 3  Correlation matrix of input 
parameters. VPD: vapor pres-
sure deficit, EC_IR: Electrical 
conductivity of irrigation water, 
EC_Media: Electrical conductiv-
ity of growing media, DAP: Day 
after planting
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potting medium as the model crop system and included a 
control alongside three EC_IR levels 2, 4, and 8 dS m− 1 as a 
baseline information. A previous study was available about 
the effects of these salinity levels on papaya in this medium 
from a previous study (de Souza et al. 2024) where a phe-
notyping system was not employed and transpiration was 

saline conditions. However, conducting extensive stud-
ies to assess the impact of salinity on plant physiological 
responses at a field or greenhouse scale can be challenging. 
These studies often require significant time, and resources, 
and are practically limited due to space, time, and equip-
ment constraints. In this study, we used papaya in Turface® 

Fig. 4  Scatter and density plot of measured and estimated transpira-
tion rate (g water per plant per min) using three input variables (Solar 
Radiation, Vapor Pressure Deficit, and Salinity Level) for XGBt_1, 

CATBt_1, LAGBt_1, RF_1, and DT_1, and Two Input Variables 
(Solar Radiation and Vapor Pressure Deficit) for XGBt_2, CATBt_2, 
LAGBt_2, RF_2, and DT_2
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treatments that the phenotyping system could accommo-
date. To fill in the “gaps” in the data and better predict the 
response of papaya to varying EC_IR levels, we developed 
and deployed five machine-learning models capable of sim-
ulating plant transpiration under a broader range of EC_IR 
levels, and therefore extended our analysis to include nine 
distinct EC_IR levels with 1 dS m− 1 increments (0, 1, 2, 
3, 4, 5, 6, 7, and 8 dS m− 1). This finer gradual increment 
allowed us to capture more detailed insights into the salin-
ity response, particularly at levels where empirical data was 
previously lacking. All algorithms successfully predicted 
transpiration as affected by EC_IR levels. Transpiration 
increased up to EC_IR of 2 dS m− 1 and then decreased 
beyond in all machine learning models. However, a signifi-
cant decline in daily average transpiration was induced at 
6 dS m− 1 in all machine learning models used in this study 
(Fig. 7).

This finding agrees with de Souza et al. (2024), who 
reported reduced transpiration (measured on a leaf area 
basis) of papaya at an EC_IR of 6 dS m− 1. The predicted 
cumulative transpiration values from the XGBt, CATBt, 
LAGBt, DT, and RF models demonstrated a strong fit to a 
quadratic regression model, each yielding R² value of 0.99 
(Fig. 8). These enabling the identification of maximum EC_
IR level for papaya plants up to the age of 15 weeks. By 
simulating the impacts of previously untested EC_IR levels, 
our study was able to develop a quadratic equation, which 
could be used to predict the possible effect of EC_IR on the 

measured only on a leaf area basis. Thus, we indicated the 
salinity levels that may elicit a response of the same plant 
in the same medium using the phenotyping platform. The 
results of the current study showed a significant negative 
impact of an EC_IR level of 8 dS m− 1 on papaya transpira-
tion. The effects of intermediate EC_IR levels such as 5, 
6, and 7 dS m− 1, were not tested due to the limitations of 
the plant phenotyping platform and the number of replicated 

Fig. 6  Swarm plots of measured transpiration rate and estimated by 
XGBt_1, CATBt_1, LAGBt_1, RF_1, and DT_1 using solar radiation, 
vapor pressure deficit, days after planting and EC_IR and XGBt_2, 
CATBt_2, LAGBt_2, RF_2, and DT_2 using solar radiation, vapor 
pressure deficit and days after planting

 

Fig. 5  Feature importance evaluation of Input Variables (DAP: Day after planting, Solar Radiation, Vapor Pressure Deficit, and EC_IR) in model-
ing transpiration using machine learning models (XGBt, CATBt, LAGBt, RF, and DT)
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and dry weight of stem, leaf, and root weight by 37%, 31%, 
36%, and 47%, respectively (Fig. 9). However, there was no 
significant biomass change at 2 and 4 dS m− 1. These results 
agree with de Souza et al. (2024) where a EC_IR level of 6 
dS m− 1 and below did not significantly impact papaya bio-
mass. Generally, the most notable decline was observed in 
the plant’s root system. Salinity stress causes a significant 
impact on the growth and development of plants by hinder-
ing transpiration (Munns and Tester 2008). The decline in 
papaya dry biomass with salinity has been reported multiple 
times (Aguilar-Bautista et al. 2022; Álvarez-Méndez et al. 
2022; De Lima-Neto et al. 2016; Sá et al. 2016).

transpiration rate of papaya plants to the age of 15 weeks. 
This information is crucial for developing effective salinity 
mitigation strategies in papaya cultivation, potentially aid-
ing in protecting yield loss and overall plant health in saline-
prone regions. Hence, there is a need to confirm this finding 
with an observed data set collected from a real environment 
with a wide range of salinity.

Effect of salinity on papaya biomass

The impact of salinity on the biomass of papaya was evident, 
where 8 dS m− 1 significantly decreased the total biomass, 

Fig. 7  The impact of salinity on the daily average whole-plant transpiration of papaya (g water per plant per minute) at EC_IR levels of 0, 1, 2, 3, 
4, 5, 6, 7, and 8 dS m− 1 (data predicted by machine learning models)
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Plants employ various physiological mechanisms to 
combat salinity-induced stress. One such mechanism 
involves reducing leaf area to minimize water loss, which 
limits water and consequently salt uptake by the roots (Sá 
et al. 2016). Plants can also manage salinity by lowering 
the hydraulic conductivity of their roots, thus reducing the 
uptake and transport of salts to the upper tissues of the plant. 
This adaptive response significantly reduces plant transpi-
ration, which is crucial in maintaining water balance and 
transporting nutrients. However, decreased hydraulic con-
ductivity leads to salt accumulation in the root zone, causing 
osmotic stress and impeding water and nutrient absorp-
tion, ultimately decreasing plant biomass (Vysotskaya et 
al. 2010). Moreover, the decline in plant growth is directly 

The decline in papaya biomass could be induced due 
to Na+ and Cl− toxicity, thus competing with the uptake of 
nutrients such as Ca2+, K+, and NO3

− (Huang et al. 2017; 
Mengel and Kirkby 2010). Figure  10 shows the negative 
correlation between the content of Na+ in papaya leaves with 
the total biomass, and dry weight of stem, leaf, and root (r 
= -0.64, -0.48, -0.59, and − 0.73 − 0.72, respectively). Addi-
tionally, the content of Na+ in the root was negatively corre-
lated with total biomass, stem, leaf, and root dry weights (r 
= -0.64, -0.55, -0.65, and − 0.62, respectively). The negative 
correlation between Na+ content in plants and their biomass 
and growth rate is well-documented in the literature (Munns 
and Tester 2008).

Fig. 8  Relation between EC_IR and machine learning models (XGBt, CATBt, LAGBt, RF, and DT) predicted transpiration based on new set of 
experimental data
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increase starting at 4 dS m− 1 in leaves and 2 dS m− 1 in the 
roots. The content of Na+ increased by 362%, 260%, and 
69% in the leaves, and by 320%, 219%, and 151% in the 
roots at EC_IR levels of 8, 4, and 2 dS m− 1, respectively. 
The accumulation of ions in plant-growing media generally 
leads to their preferential uptake and subsequent accumula-
tion in plant tissue, which can potentially reach toxic levels. 
The toxic level of Na+ in fruit plant tissue ranges between 

associated to a decline in transpiration as papaya was expe-
riencing a decline in transpiration as salinity increased 
beyond certain level.

Effect of salinity on the uptake of Na+ and Cl-

Salinity induced a significant increase of Na+ content in 
the leaves and roots of papaya (Fig. 11), with a significant 

Fig. 10  Correlation between 
plant parameters and cumulative 
transpiration

 

Fig. 9  The effect of salinity on 
the (A) total biomass, (B) stem, 
(C) root, and (D) leaf dry weight 
of papaya
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balance, and the process is very costly in terms of energy 
expenditure (Munns et al. 2020).

Conclusion

The use of whole-plant high-throughput phenotyping sys-
tems, such as the PlantArray utilized in this study, over-
comes the challenges of measuring plant transpiration and 
generates extensive datasets on plant water use dynam-
ics. The study used plant transpiration data collected from 
papaya (from 1 week to ~ 15 weeks after transplanting) 
grown in PlantArray system. All machine learning mod-
els (extreme gradient boosting, categorical boosting, light 
gradient boosting, random forest, and decision tree) effec-
tively captured the salinity-induced change in transpira-
tion. Machine learning models that included salinity as an 
input variable performed substantially better than the other 
models, highlighting the importance of considering salin-
ity in predictive models for accurate irrigation scheduling. 
Salinity significantly contributed to the predictive capacity 
of all machine learning models by up to 32%. When salinity 
was included in the models, the accuracy of transpiration 
estimation increased by up to 19% for R2, 25% for RMSE, 

0.2 and 0.5%. (Ayers and Westcot 1985). Na+ and its pref-
erential uptake can also antagonistically affect the uptake of 
other cations such as K+ and Ca2+. For instance, based on 
the study of Aguilar-Bautista et al. (2022), there was a 25% 
decline in the uptake of K+ and a 39% decline in the uptake 
of K and Ca, respectively. Therefore, salt stress can reduce 
the uptake of nutrients such as N, K+ and Ca2+ (Uygur and 
Yetisir 2009).

The contents of Cl− in both roots and leaves increased 
with an increment of EC_IR levels (Fig. 12). The Cl− con-
tent showed a significant increase starting from the EC_IR 
level of 2 dS m− 1 in leaves and 4 dS m− 1 in roots. The 
increase in Cl− content was substantial, reaching up to 98% 
in the leaves and 71% in the roots of the papaya plant at a 
EC_IR level of 8 dS m− 1. Chloride toxicity in tree crops 
such as papaya can be seen when Cl− content in plant tissue 
reaches above 0.3% (Ayers and Westcot 1985).

The abundance of Cl− in solution may interfere with the 
uptake of nutrients such as NO3

− (Mengel and Kirkby 2010). 
Both Na+ and Cl− were more accumulated in the roots of 
papaya. This indicates further uptake and translocation 
of salts were hindered and accumulated at the root of the 
papaya plant. In saline soil, after a certain time, plants have 
to almost fully exclude Na+ and Cl− to maintain osmotic 

Fig. 12  The effect of salinity on 
Cl− content of (A) Papaya leaves, 
and (B) Papaya roots

 

Fig. 11  The effect of salinity on 
Na+ content of (A) Papaya leaves, 
and (B) Papaya roots
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an increase in the concentration of Na+ and Cl- were also 
evident due to salinity. The observed decline in biomass can 
be attributed to Na+ and Cl- induced toxicity, which com-
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-. By integrating real-time transpiration data with 
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water supply to meet evapotranspiration demands but also 
helps in flushing out salts from the root zone, thereby main-
taining plant health and productivity.

Acknowledgements  This publication is based on research funded by 
the United States Department of Agriculture’s National Institute of 
Food and Agriculture under award number 2020-67019-31163. Any 
opinions, results, conclusions, or recommendations contained in this 
publication are solely those of the authors and do not necessarily 
reflect the views of the USDA.

Author contributions  Niguss Solomon Hailegnaw and Haimanote 
Bayabil: Conceptualization of the paper idea, Bruce Schaffer: Re-
search design and review, Niguss Solomon Hailegnaw: Writing the 
draft paper, data analysis, and modeling; Haimanote Bayabil: Super-
vising and reviewing, Girma Awoke: Writing and Reviewing, Aline 
Camargo: writing and reviewing; Edivan Rodrigues: Reviewing.

Data availability  Data will be available up on request.

Declarations

Competing interests  The authors declare no competing interests.

References

Aguilar-Bautista A, Alejo-Santiago G, Aburto-González CA, 
Juárez-Rosete CR, Bugarín-Montoya R, López-Guzmán GG, 
García-Herrera T, Aguilar-Bautista A, Alejo-Santiago G, Aburto-
González CA, Juárez-Rosete CR, Bugarín-Montoya R, López-
Guzmán GG, García-Herrera T (2022) Salinity Effect of Nutrient 
Solution on Maradol papaya. Cienc. Tecnol. Agropecu. 23. ​h​t​t​p​​s​:​
/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​2​​1​9​3​​0​/​r​​c​t​a​​.​v​o​​l​2​3​_​​n​u​​m​3​_​a​r​t​:​2​3​9​6

Álvarez-Méndez SJ, Urbano-Gálvez A, Mahouachi J, Álvarez-Mén-
dez SJ, Urbano-Gálvez A, Mahouachi J (2022) Mitigation of salt 
stress damages in Carica papaya L. seedlings through exogenous 
pretreatments of gibberellic acid and proline. Chil J Agric Res 
82:167–176. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​4​​0​6​7​​/​S​0​​7​1​8​​-​5​8​​3​9​2​0​​2​2​​0​0​0​1​0​0​1​6​
7

Ayers, Robert S., and Dennis W. Westcot. Water quality for agriculture. 
Vol. 29. Rome: Food and agriculture organization of the United 
Nations, 1985.

Breiman L (2001) Random Forests Mach Learn 45:5–32. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​
r​g​/​​1​0​.​1​​0​2​3​​/​A​:​​1​0​1​0​9​3​3​4​0​4​3​2​4

1 3

Page 13 of 14  173

https://doi.org/10.3390/metabo11110724
https://doi.org/10.3390/metabo11110724
https://doi.org/10.1016/j.plaphy.2024.108664
https://doi.org/10.1016/j.plaphy.2024.108664
https://doi.org/10.4067/S0718-58392016000200014
https://doi.org/10.4067/S0718-58392016000200014
https://doi.org/10.1186/s43170-024-00216-3
https://doi.org/10.1186/s43170-024-00216-3
https://doi.org/10.1016/j.agwat.2020.106547
https://doi.org/10.1016/j.agwat.2020.106547
https://doi.org/10.1016/j.agwat.2020.106547
https://doi.org/10.1016/j.agwat.2020.106547
https://doi.org/10.3390/plants11151923
https://doi.org/10.3390/plants11151923
https://doi.org/10.1016/j.scitotenv.2023.169403
https://doi.org/10.1016/j.scitotenv.2023.169403
https://doi.org/10.1111/tpj.13425
https://doi.org/10.1186/s40537-020-00369-8
https://doi.org/10.1186/s40537-020-00369-8
https://doi.org/10.1016/j.agwat.2017.08.012
https://doi.org/10.21930/rcta.vol23_num3_art:2396
https://doi.org/10.21930/rcta.vol23_num3_art:2396
https://doi.org/10.4067/S0718-58392022000100167
https://doi.org/10.4067/S0718-58392022000100167
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324


Modeling Earth Systems and Environment (2025) 11:173

elevated electrical conductivity of the nutrient solution. Sci Hor-
tic 218:230–239. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​s​c​i​​e​n​t​​a​.​2​0​​1​7​​.​0​2​.​0​1​8

Sá, Francisco Vanies da Silva, Marcos Eric Barbosa Brito, Rômulo 
Carantino Lucena Moreira, Alberto Soares de Melo, Luderlân-
dio de Andrade Silva, Hans Raj Gheyi, Lizaiane Cardoso de 
Figueiredo, Emanoela Pereira de Paiva (2016) Balance of salts 
and growth of papaya cultivars irrigated with saline water. Biosci 
J 32(4). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​4​3​9​​3​/​B​​J​-​v​3​2​n​4​a​2​0​1​6​-​3​2​7​5​3

Shrivastava P, Kumar R (2015) Soil salinity: A serious environmental 
issue and plant growth promoting bacteria as one of the tools for 
its alleviation. Saudi J Biol Sci 22:123–131. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​
1​6​​/​j​.​​s​j​b​s​.​2​0​1​4​.​1​2​.​0​0​1

Stavridou E, Hastings A, Webster RJ, Robson PRH (2017) The impact 
of soil salinity on the yield, composition and physiology of the 
bioenergy grass Miscanthus × giganteus. GCB Bioenergy 9:92–
104. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​1​1​​/​g​c​​b​b​.​1​2​3​5​1

Tahraoui H, Amrane A, Belhadj A-E, Zhang J (2022) Modeling the 
organic matter of water using the decision tree coupled with boot-
strap aggregated and least-squares boosting. Environ Technol 
Innov 27:102419. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​e​t​i​.​2​0​2​2​.​1​0​2​4​1​9

Uygur V, Yetisir H (2009) Effects of rootstocks on some growth 
parameters, phosphorous and nitrogen uptake watermelon under 
salt stress. J Plant Nutr 32:629–643. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​8​0​​/​0​1​​9​
0​4​1​6​0​8​0​2​7​1​5​4​4​8

Vysotskaya L, E Hedley P, Sharipova G, Veselov D, Kudoyarova G, 
Morris J, G Jones H (2010) Effect of salinity on water relations 
of wild barley plants differing in salt tolerance. AoB PLANTS 
2010(plq006). ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​9​3​​/​a​o​​b​p​l​a​/​p​l​q​0​0​6

Wang J, Gao X, Zhou Y, Wu P, Zhao X, Cai Y (2024) Modeling the 
dynamics of evapotranspiration of wolfberry (Lycium barbarum 
L.) under different cultivation methods on the Tibetan plateau. J 
Hydrol 131537

Zhang W, Wu C, Zhong H, Li Y, Wang L (2021) Prediction of und-
rained shear strength using extreme gradient boosting and random 
forest based on bayesian optimization. Geosci Front 12:469–477. ​
h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​g​s​f​.​2​0​2​0​.​0​3​.​0​0​7

Zhou Z, Zhao L, Lin A, Qin W, Lu Y, Li J, Zhong Y, He L (2021) 
Exploring the potential of deep factorization machine and various 
gradient boosting models in modeling daily reference evapotrans-
piration in China. Arab J Geosci 13:1287. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​​r​​g​​/​​1​0​​.​1​0​​​0​7​
/​​s​1​2​​5​1​7​-​​0​2​0​-​0​​6​2​9​3​-​8

Publisher’s note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y 
(2017) LightGBM: A highly efficient gradient boosting decision 
tree, in: advances in neural information processing systems. Cur-
ran Associates, Inc

Kemanian AR, Stöckle CO, Huggins DR (2005) Transpiration-use 
efficiency of barley. Agric Meteorol 130:1–11. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​
1​​0​1​6​​/​j​.​​a​g​r​​f​o​r​​m​e​t​.​​2​0​​0​5​.​0​1​.​0​0​3

Lee J, Bateni SM, Jun C, Heggy E, Jamei M, Kim D, Ghafouri HR, 
Deenik JL (2024) Hybrid machine learning system based on mul-
tivariate data decomposition and feature selection for improved 
multitemporal evapotranspiration forecasting. Eng Appl Artif 
Intell 135:108744

Li L, Chen S, Yang C, Meng F, Sigrimis N (2020) Prediction of plant 
transpiration from environmental parameters and relative leaf 
area index using the random forest regression algorithm. J Clean 
Prod 261:121136. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​j​c​l​​e​p​r​​o​.​2​0​​2​0​​.​1​2​1​1​3​6

Lu Y, Fricke W (2023) Salt Stress—Regulation of root water uptake in 
a Whole-Plant and diurnal context. Int J Mol Sci 24:8070. ​h​t​t​p​​s​:​/​​
/​d​o​i​​.​o​​r​g​/​​1​0​.​3​​3​9​0​​/​i​j​​m​s​2​4​0​9​8​0​7​0

Majeed A, Muhammad Z (2019) Salinity: A major agricultural Prob-
lem—Causes, impacts on crop productivity and management 
strategies. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby 
HF (eds) Plant abiotic stress tolerance: agronomic, molecular and 
biotechnological approaches. Springer International Publishing, 
Cham, pp 83–99. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​9​7​​8​-​3​-​0​3​0​-​0​6​1​1​8​-​0​_​3

Malavolta E, Vitti GC, Oliveira AS (1997) Avaliação do Estado Nutri-
cional das Plantas: Princípios e Aplicações. Piracicaba: Potafos, 
p 201

Mengel K, Kirkby E. Principles of plant nutrition. Vol. 1. springer sci-
ence & Business Media, 2001.

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu 
Rev Plant Biol 59:651–681. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​4​6​​/​a​n​​n​u​r​​e​v​.​​a​r​p​
l​​a​n​​t​.​5​9​.​0​3​2​6​0​7​.​0​9​2​9​1​1

Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic adjust-
ment and energy limitations to plant growth in saline soil. New 
Phytol 225:1091–1096. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​1​1​​/​n​p​​h​.​1​5​8​6​2

Nicolas F, Kamai T, Ben Gal A, Ochoa-Brito J, Daccache A, Ogun-
mokun F, Kisekka I (2023) Assessing salinity impacts on crop 
yield and economic returns in the central Valley. Agric Water 
Manag 287. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​a​g​w​a​t​.​2​0​2​3​.​1​0​8​4​6​3

Peçanha AL, da Silva JR, Rodrigues WP, Ferraz TM, Torres Netto A, 
Lima RSN, Lopes TS, Ribeiro MS, Deus BCdaSde, Couto TRdo, 
Schaffer B, Campostrini E (2017) Leaf gas exchange and growth 
of two Papaya (Carica Papaya L.) genotypes are affected by 

1 3

173  Page 14 of 14

https://doi.org/10.1016/j.scienta.2017.02.018
https://doi.org/10.14393/BJ-v32n4a2016-32753
https://doi.org/10.1016/j.sjbs.2014.12.001
https://doi.org/10.1016/j.sjbs.2014.12.001
https://doi.org/10.1111/gcbb.12351
https://doi.org/10.1016/j.eti.2022.102419
https://doi.org/10.1080/01904160802715448
https://doi.org/10.1080/01904160802715448
https://doi.org/10.1093/aobpla/plq006
https://doi.org/10.1016/j.gsf.2020.03.007
https://doi.org/10.1016/j.gsf.2020.03.007
https://doi.org/10.1007/s12517-020-06293-8
https://doi.org/10.1007/s12517-020-06293-8
https://doi.org/10.1016/j.agrformet.2005.01.003
https://doi.org/10.1016/j.agrformet.2005.01.003
https://doi.org/10.1016/j.jclepro.2020.121136
https://doi.org/10.3390/ijms24098070
https://doi.org/10.3390/ijms24098070
https://doi.org/10.1007/978-3-030-06118-0_3
https://doi.org/10.1146/annurev.arplant.59.032607.092911
https://doi.org/10.1146/annurev.arplant.59.032607.092911
https://doi.org/10.1111/nph.15862
https://doi.org/10.1016/j.agwat.2023.108463

	﻿Assessing salinity-induced impacts on plant transpiration through machine learning: from model development to deployment
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Experimental setup
	﻿Experimental design
	﻿Physiological assessment and biomass measurements
	﻿Machine learning models
	﻿Evaluation of developed machine learning algorithms
	﻿Statistical analysis

	﻿Results and discussion
	﻿Performance of machine learning models in capturing salinity-induced changes of papaya transpiration
	﻿Model deployment
	﻿Effect of salinity on papaya biomass
	﻿Effect of salinity on the uptake of Na+ and Cl-

	﻿Conclusion
	﻿References


