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Summary 30 

• We conducted research to predict daily transpiration in crops by utilizing a combination of 31 

machine learning (ML) models combined with extensive transpiration data from gravimetric 32 

load cells and ambient sensors. Our aim was to improve the accuracy of transpiration 33 

estimates. 34 

• Data were collected from hundreds of plant specimens growing in two semi-controlled 35 

greenhouses over seven years, automatically measuring key physiological traits (serves as 36 

our ground truth data) and meteorological variables with high temporal resolution and 37 

accuracy. We trained Decision tree, Random Forest, XGBoost, and Neural Network models 38 

on this dataset to predict daily transpiration. 39 

• The Random Forest and XGBoost models demonstrated high accuracy in predicting the 40 

whole plant transpiration, with R² values of 0.89 on the test set (cross-validation) and R2 = 41 

0.82 on holdout experiments. Ambient temperature was identified as the most influential 42 

environmental factors affecting transpiration. 43 

• Our results emphasize the potential of ML for precise water management in agriculture, and 44 

simplify some of the complex and dynamic environmental forces that shape transpiration.  45 

 46 
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1. Introduction 48 

Transpiration, the process of water evaporation from plants, has been a subject of scientific studies for 49 

centuries. It primarily occurs through leaves, facilitating a continuous transport of water and essential 50 

nutrients from the roots. One remarkable aspect of transpiration is how plants regulate it in response 51 

to their surroundings through dynamic control mechanisms. This process is intricately linked to the 52 

behavior of stomata, small pores found on leaf surface. Stomata can adjust their aperture to manage 53 

the rate of transpiration (Lange et al., 1971). This adaptive response to the environment appears to 54 

have evolved as one of the protective mechanisms against excessive dehydration and physiological 55 

damage (Iqbal et al., 2020). 56 

The dynamic ability of plants to regulate their transpiration rates plays a vital role in facilitating the 57 

exchange of carbon dioxide and water, thereby improving water use efficiency and optimizing growth. 58 

Various factors, both biological, such as plant size (Geller & Smith, 1982) and environmental  such as 59 

solar Radiation (Pieruschka et al., 2010), temperature (Ben-Asher et al., 2008) , humidity (Rawson et 60 

al., 1977), soil water supply (Madhu & Hatfield, 2014) , carbon dioxide levels (Imai & Murata, 1976; 61 

Madhu & Hatfield, 2014), and wind speed (Dixon & Grace, 1984), can impact the transpiration rates of 62 

different plants. The understanding of these influential factors holds paramount significance in the 63 

fields of agriculture and ecophysiological sciences. 64 

Understanding and quantifying the factors which affects transpiration and plant-water relations has a 65 

key role in optimizing water management strategies in agricultural and greenhouse settings. Therefore, 66 

various modeling approaches have been employed to simulate and evaluate transpiration rates in 67 

plants. One common approach is the use of mechanistic models, which are based on physiological 68 

principles and the understanding of plant structure and function. For example, the semi-empirical Ball-69 

Berry model integrates stomatal conductance and environmental variables to estimate transpiration 70 

rates (Ball et al., 1987). However, it's important to note that the Ball-Berry model simplifies the 71 

complex process, assuming a linear relationship between stomatal conductance and photosynthesis, 72 

which can significantly influence stomatal behavior and transpiration rates. 73 

In contrast, process-based models like the Penman-Monteith equation take a more comprehensive 74 

approach. Process-based models represent a modeling approach that simulates natural processes by 75 

representing the underlying mechanisms. Penman-Monteith equation combine energy balance and 76 

aerodynamic principles to predict evapotranspiration (Monteith, 1965; Penman, 1948). The FAO56 77 

Penman–Monteith is commonly used in the agriculture community to estimate evapotranspiration 78 

(Landeras et al., 2008). However, previous studies have found daily FAO56 Penman–Monteith 79 

exhibited up to 22% discrepancy in accuracy compared to the actual whole-plant transpiration 80 
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measured using lysimeters (Averbuch & Moshelion, 2024; Kiraga et al., 2023; López-Urrea et al., 2006). 81 

These discrepancies underscore the ongoing need for improvement and refinement in modeling 82 

techniques to better understand and predict transpiration in different conditions and environments. 83 

An alternative method involves developing models through machine learning algorithms, including 84 

artificial neural networks (ANN) and support vector regression (SVR). These have shown promising 85 

results in estimating transpiration based on environmental inputs and plant characteristics 86 

(Balasubramanian & Thirugnanam, 2023; de Meneses et al., 2020; Ferreira et al., 2019; Xing et al., 87 

2022). However, many of these studies rely on broad or indirect data labels (e.g., remote sensing, 88 

estimated transpiration, or synthetic data) that do not fully capture the detailed plant–environment 89 

interactions critical for accurate physiological modeling.  To extend our understanding of how machine 90 

learning has been applied in this field, we conducted a systematic search of the Scopus database for 91 

relevant studies (for more details, see Supplementary Methods S1). Among these, 33.9% (184 articles) 92 

employed indirect estimation methods, primarily remote sensing (150 articles) and eddy covariance 93 

(34 articles), while empirical models like FAO-56 Penman–Monteith appeared in 26.0% (141 articles). 94 

However, only 4.8% (26 articles) included keywords related to direct physiological measurements, such 95 

as sap flow sensors, load cells, lysimeters, porometry, or gas exchange systems—highlighting a clear 96 

gap in capturing direct plant-environment interactions.  97 

Despite growing interest in ML-based models for transpiration prediction, accurately modeling whole-98 

plant transpiration remains a major challenge. This is because transpiration is a highly dynamic 99 

process, regulated by thousands of signalling and transport processes within the plant and influenced 100 

by multiple, interdependent environmental variables. To capture this complexity, ML models must be 101 

trained on reliable, high-resolution physiological ground truth data that reflect actual plant behavior - 102 

not estimated or proxy data streams. Load-cells lysimeters are widely regarded as the gold standard 103 

for measuring whole-plant transpiration, as they enable direct quantification of evapotranspiration 104 

(ET) or transpiration flux (Halperin et al., 2017). ML models trained on data derived from lysimeters 105 

can serve as reliable benchmarks for validating or calibrating alternative, indirect estimation methods 106 

(Amani & Shafizadeh-Moghadam, 2023; Anapalli et al., 2016; X. Liu et al., 2017). Continuous, high-107 

throughput whole-plant transpiration measurements from load-cells lysimeters provide the necessary 108 

physiological precision for this task—they represent the direct, non-manipulated, transpiration 109 

‘ground truth’ required to train accurate and biologically meaningful models. Without such direct 110 

measurements, models risk learning patterns that do not reflect real plant behavior, ultimately limiting 111 

their accuracy, robustness, and utility. Despite their benefits, most studies employing lysimeters tend 112 

to use either drainage or manual lysimeters, resulting in a limited number of instruments due to the 113 

high costs and labor involved in deployment and maintenance (Z. Chen et al., 2020; Kiraga et al., 2023). 114 
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Our approach, by contrast, leverages a high-throughput load-cells lysimeter platform, with high signal 115 

to noise ratio, enabling large-scale, directly labeled datasets suitable for robust model training. 116 

In this study, we focused on daily measurements of transpiration for mediterranean summer and 117 

winter crops, tomato and cereals (Wheat and Barley), respectively. Over the past seven years, we have 118 

collected a precise-data set of direct physiological traits from hundreds of plant specimens, along with 119 

corresponding environmental data. Leveraging this unique dataset, we employed machine learning 120 

models to predict the daily transpiration of well-irrigated plants. Our data is distinguished by its high 121 

scale and the use of ground truth annotated physiological measurements (e.g., whole plant 122 

transpiration g/day). These are obtained from an extensive array of load cells lysimeters and 123 

atmosphere conditions.  124 

The objectives of this study are to leverage our dataset, which includes soil-plant-atmosphere 125 

continuum data, to (1) evaluate the effectiveness of conventional tree-based machine learning models, 126 

including Random Forest, a XGBoost model, and a neural network model, in predicting daily 127 

transpiration for tomato and cereal crops; and (2) determine the hierarchical significance of diverse 128 

ambient  factors, thereby pinpointing the critical environmental factors that exert influence on 129 

transpiration.  130 
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2. Materials and methods 131 

2.1 Research overview  132 

In this study, we aimed to understand the determinants of daily transpiration in plants using a 133 

structured machine learning research workflow. Data collection took place within semi-commercial 134 

greenhouses using functional phenotyping platform composed of load-cells lysimeters. This platform 135 

provided essential information on several plant physiological traits (transpiration, plant weight, growth 136 

rate etc.) and ambient conditions After essential data pre-processing steps, including outlier removal 137 

and transformation to daily values, we had 6115 observations (81% of the original daily data), split into 138 

training and testing sets. Machine learning models, including tree-based models and neural network, 139 

were trained to predict daily transpiration using the features: plant weight, temperature, humidity, 140 

Daily Light Integral (DLI), Vapor Pressure Deficit (VPD), plant type, and soil type. Model evaluation 141 

encompassed various metrics such as R2 and Root Mean Square Error (RMSE). Model interpretation 142 

was accomplished through the analysis of feature importance using techniques like Permutation and 143 

Shapley Additive Explanations (SHAP; see 2.9). These methods hold major contribution in 144 

understanding the different features to the models' predictions and their impact on daily transpiration. 145 

This workflow allowed us to gain valuable insights into the determinants of daily transpiration in plants.  146 

2.2 Experimental site 147 

Data was collected from two semi-controled greenhouses located at the I-CORE centre for Functional 148 

Phenotyping of the Faculty of Agriculture, Food, and Environment in Rehovot, Israel 149 

(http://departments.agri.huji.ac.il/plantscience/icore.php). The 'main greenhouse' (Fig. 1A) is a 150 

polycarbonate covered structure at coordinates 31°54'15.0"N, 34°48'03.6"E, measuring 18 m in length 151 

and 16 m in width, with a gutter height of 4.5 m and a maximum ridge height of 6 m (dual-gable 152 

structure). The estimated internal volume, based on an average height of 5.25 m, is approximately 153 

1,417.5 m³. The 'secondary greenhouse' (Fig. 1B), also polycarbonate covered, located at 154 

31°54'22.5"N, 34°48'10.6"E, spans 6 x 17 m^2 meters and reaches a height of 3 m.  155 

Both facilities feature natural daylight conditions and are equipped with a cooling pad along the 156 

northern wall to maintain temperatures below 35 degrees Celsius. Ventilation is achieved by using a 157 

positive pressure cooling system, where outside air is pushed into the greenhouse through a wet pad 158 

by four fans, each with capacity of 18,000 m3/h, totaling flow rate of 72,000 m3/h (This setup enables 159 

an air exchange rate of approximately 51 air changes per hour, for the main greenhouse). The fans are 160 

automatically activated about 30 minutes before sunrise and turned of about 30 minutes after sunset 161 

to ensure consistent airflow during the photoperiod.  This high ventilation rate is designed to maintain 162 
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CO₂ concentrations similar to those in the ambient outdoor air, facilitating natural plant responses. To 163 

complement these efforts and further simulate natural external conditions, wind speed and direction 164 

are precisely monitored using an ATMOS 22 ultrasonic anemometer, centrally located in the main 165 

greenhouse. This sensor records an average wind speed of 0.324 m/s. For both greenhouses, the 166 

experimental conditions varied, with natural Daily Light Integral (DLI) values ranging from 2 to 34 167 

mol/(m²·d) and mean daily temperatures fluctuating between 10 and 33°C (Table S1A).  168 

2.3 General experiment setup and Data collecting 169 

The data was collected from June 2018 to March 2024. Using the functional phenotyping platform –170 

PlantArray (PlantDitech, Israel; Fig. 1C) as described by Dalal et al., 2020; Halperin et al., 2017. Briefly, 171 

an array of  load cell lysimeters was utilized (Fig. 1), to continuous plant weight measurement and the 172 

derivation of both transpiration-induced water loss and daily plant mass accumulation. To ensure that 173 

water loss reflects plant transpiration only, the surface of the soil in each pot was sealed to prevent 174 

soil evaporation (Fig. 1D). All data was automatically collected and uploaded to the cloud base SPAC 175 

analytics system (PlantDitech, Israel).  176 

Meteorological data, consisting of four essential variables - temperature, VPD, light, and relative 177 

humidity (RH), were collected using a weather station (Watchdog 2000 series; Spectrum Technologies, 178 

Illinois, USA) connected to the PlantArray system. Within each greenhouse, the atmospheric sensors 179 

were positioned at the center of the greenhouse, approximately 1 meter above the height of the pot 180 

surface (Fig. 1C).  181 

  182 
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The lysimeter-based phenotyping system employed several strategies to enhance the signal-to-noise 200 

ratio, thereby reducing potential artifacts in the noisy greenhouse environment. These strategies 201 

include the use of high-accuracy load cell transducers, achieving a precision of ±0.167 g per kg loaded 202 

on each cell. These transducers are also temperature-compensated to effectively minimize signal drift 203 

caused by ambient temperature fluctuations. Furthermore, each load cell is connected via a short 204 

cable (45 cm) to its individual analog-to-digital (A/D) controller, significantly reducing analog electrical 205 

interference and noise (typically associated with long cables connected to a single data logger). To 206 

prevent overheating due to direct solar radiation, thermal insulation and sealed covers are applied 207 

separately to each load cell. Additionally, vibration-induced noise is mitigated by placing compressed 208 

foam cushions and mass under each load cell. Measures to counteract the "pot effect" (Gosa et al., 209 

2019), such as double-pot arrangements isolating the soil and roots from direct solar radiation induced 210 

Figure 1: Configuration of load cell lysimeter system and greenhouse. (A) Main greenhouse containing 

various crops monitored using the PlantArray phenotyping platform. (B) Secondary greenhouse with 

wheat plants monitored using the same system. (C) Image of a single PlantArray unit, showing the load-

cell lysimeter, double-pot setup, “personalize” controller collecting data and controlling each pot 

irrigation, and the central weather station used for continuous environmental monitoring. (D) Top view 

of a pot showing the sealed soil surface cover, designed to isolate plant transpiration from soil 

evaporation. (E) Photorealistic illustration of a single lysimeter unit. It includes a temperature-

compensated load cell that converts mechanical force into an electrical signal, directly connected to the 

controler. The cell is mounted between two steel platforms to ensure stable weight measurement. As 

shown in (C), the lysimeter is typically covered with a polystyrene block and a thermal-isolated lid. 
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heat, to ensure the reliability and consistency of the physiological data collected during the 211 

experiment. (Fig. 1E) 212 

2.3.1 Plant Material and Growing Media  213 

The plants in the greenhouse were grown in pots (4L) filled with sand (Silica sand grade 20-30 , particle 214 

size 0.595–0.841 mm; Negev Industrial Minerals Ltd., Yeruham, Israel) or soil (Bentel 11 garden mix, 215 

composed of (w/w) 55% peat, 20% tuff and 25% puffed coconut coir fiber ;Tuff-Substrates, Alon Tavor, 216 

Israel).  217 

Tomato, wheat and barley (cereals), were employed in this experiment. The tomato (Solanum 218 

lycopersicum) variety incorporated in the study was mainly M82 cultivar.  The cereals included T. 219 

turgidum subsp. durum ‘Svevo’ and T. aestivum cv. Gadish, among others. Focusing on these commonly 220 

cultivated crops, ensuring multiple repetitions, and capturing the diversity of both winter and summer 221 

representations. 222 

2.3.2 Irrigation and water balance measurements  223 

All pots were irrigated through repeated irrigation and drainage cycles every night, reliably restoring 224 

the soil to field capacity (hereafter referred to as "well-irrigated"). This approach not only maintained 225 

optimal soil moisture levels but also facilitated leaching to prevent salt accumulation. Daily pre-dawn 226 

pot mass was measured after full drainage. Plant mass was calculated at this point. The difference in 227 

pot mass between consecutive days reflects the plant’s biomass gain. The lack of additional irrigation 228 

throughout the daylight hours ensured a monotonic pot-mass decrease between subsequent irrigation 229 

events. Transpiration was calculated based on the mass loss during the day. For full details on 230 

calculations and system see Dalal et al. (2020) and Halperin et al. (2017) . 231 

In this study, we focused exclusively on non-stressed plants by ensuring that soil water content 232 

consistently remained above the transpiration-limiting threshold (Halperin et. al., 2016). This was 233 

achieved by selecting data exclusively from control (non-drought) treatments, while deliberately 234 

excluding any data from plants that surpassed their pot's capacity, thereby ensuring non-pot effect of 235 

draught conditions. Therefore, we checked the data manually, removing entries where plants exhibited 236 

'pot limitation', a scenario where a plant's transpiration plateaus due to reaching the pot's maximum 237 

available water capacity. While the calculated total water-holding capacity is approximately 860 g in 238 

sand and 1700 g in potting media (Dalal et al., 2020), the actual available water for plants is lower: 239 

around 600 g/day in sand and 1200 g/day in soil, influenced by root structure and soil properties.  240 

 2.4 Data pre-processing 241 
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The data was initially collected at 3-minute intervals. For this research, it was further processed to 242 

generate daily values, covering the period from first light to last light (Table 1). Using daily values 243 

reduces the total data volume to balance capturing environmental variability while keeping data 244 

processing manageable. Moreover, this simplifies data interpretation, making it practical for 245 

applications such as irrigation decisions, much like other common methods, including the FAO56 246 

Penman–Monteith model for irrigation management. 247 

The type of potting media (sand or soil) and the specific plant species (tomato or cereal) were 248 

recorded. Light data in terms of Photosynthetically Active Radiation (PAR) was measured at 3-minute 249 

intervals. The Daily Light Integral (DLI) was calculated using the formula: 250 

            Formula 1:  251 

𝐷𝐿𝐼 (
𝑚𝑜𝑙

𝑚2 ∗ 𝑑𝑎𝑦
) =

∑ 𝑃𝐴𝑅𝑙𝑖𝑔ℎ𝑡 (
𝜇𝑚𝑜𝑙
𝑚2𝑠

)

𝑛
∗ 86400 (

𝑠𝑒𝑐

𝑑𝑎𝑦
) ∗

1𝑚𝑜𝑙

1000000𝜇𝑚𝑜𝑙
 252 

•  n - number of samples in a full day (480 if sampled every 3 min). 253 

• ∑ 𝑃𝐴𝑅𝑙𝑖𝑔ℎ𝑡 (
𝜇𝑚𝑜𝑙

𝑚2𝑠
) is the sum of PAR light measurements throughout the day. 254 

This calculation provided insights into the cumulative light exposure experienced by the plants over 255 

the course of a day. 256 

Our dataset initially included 7,547 observations, where each observation representing a single plant 257 

measured on a given  day. An example of an individual plant is illustrated in Fig. 2, with a single 258 

observation shown in Fig. 2H.  After a comprehensive data cleaning process, we concluded with a total 259 

of 6,115 observations. This reduction was due to the removal of observations with missing values, 260 

extreme outliers, and those exhibiting irregular behaviours such as weight loss, water shortage, or 261 

illnesses. The final variables and some pre-processing methods, such as daily aggregation of values and 262 

encoding, are detailed in Table 1.  263 

2.5 Tuning, Training, and Testing Datasets  264 

After preprocessing, the dataset comprised 6115 daily observations. Fig. 2 illustrates a sample plant 265 

with 24 observations, Fig. 3 presents the full dataset from the main greenhouse, including 266 

meteorological and aggregated physiological data. The feature variables included Temperature, 267 

Relative Humidity (RH), vapor pressure deficit (VPD), Daily light Integral (DLI), plant weight, plant type, 268 

and soil type, with the target variable being daily transpiration (Fig. 2H, Table 1). 269 

2.5.1 Validation Dataset (Holdout) 270 
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To assess the model's generalizability, a holdout dataset comprising 805 observations from 4 randomly 271 

selected experiments was established, a random seed function was set to ensure repeatability. This 272 

subset includes 400 observations related to tomato plants and 405 observations concerning cereal 273 

plants (for more information see Table S1b and Fig. S1b). This holdout dataset aims to reflect the 274 

model’s performance and effectiveness on unseen data. 275 

2.5.2 Training Dataset 276 

Ninety percent (4779 observations) of the remaining data was randomly selected to tune the 277 

hyperparameters, as detailed in Section 2.7. This initial subset helped determining the optimal 278 

hyperparameters, allowing us to assess the effectiveness of the tuning process. After selecting the best 279 

hyperparameters, the models were then trained on the full dataset, excluding the holdout set (in total 280 

5310 observations). This approach ensures that the final model training incorporates the broadest data 281 

spectrum available while retaining an independent holdout set to evaluate the model (see 2.9). 282 

  283 
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 284 

Table 1: Dataset description and the main preprocessing methods.  285 

category variable Units Description 

ID Timestamp 
 

Date  

Icore greenhouse   The greenhouse the data was collected from. Encoded as 

Main = 1 and secondary = 0. 

expId  Experiment number: each independent experiment 

contained 1-10 plants (repetitions) that the data was 

collected simultaneously from. A total of 48 independent 

experiments were used. 

plantId  The plant specific ID number, each plant was measured 

continuously for about 3-4 weeks. On average 23 daily 

observations per-plant. A total of 269 plants were used. 

Meteorology Temperture ̊C The average temperature at daytime (from the first to last 

light).  

RH % The average Relative Humidity at daytime (from the first to 

last light).  

VPD kPa The average Vapor Pressure Deficit (VPD) at daytime (from 

the first to last light).   

DLI mol/m2*day Daily Light Integral (DLI) was calculated using formula 1.  

Others Potting media 
 

“Encoded soil” - dummy variables, 0 =silica sand, 1 = soil  

 (4508 and 1607 observation respectively).    
Plant types  “Encoded plant” - dummy variable, 0 =tomato, 1 =cereal 

(3975 and 2140 observation respectively)  

Plant weight Plant Weight g The net weight of the plant as calculated at 4AM, after soil 

field capacity (for details see Halperin et al 2017). 

Transpiration g Daily water evaporating trough the plant (for details see 

Halperin et al 2017). This variable was used as output for 

the models.  

286 
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  288 

Figure 2: Representative meteorological and physiological data derived from the I-core greenhouse PlantArray 

system. This figure presents data from a single plant as an example. Daily average of (A) light integral, (B) 

temperature, (C) Relative humidity, and (D) vapor pressor deficit over a period of 22 days. (E) Plant identity 

information: plant type, potting media, ID number and plant picture at the end of the experiment. (F) Plant 

biomass - plant net weight (G) whole-plant daily transpiration, note the sensitivity of the transpiration to the 

methodological changes. (H) A single observation as it is documented it the data set. This observation is visually 

depicted in Figures A-F, on the 13th of March. X variables marked in gray and the y variable in green, representing 

the inputs and outputs used by computer models for learning and prediction. 
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Figure 3: Summary of meteorological and physiological data collected in the main I-CORE 

greenhouse over the entire study period. This figure presents the full dataset collected from the 

PlantArray lysimeter system across multiple experiments conducted in the main greenhouse. 

Panels (A–D) show daily average meteorological conditions: (A) daily light integral (DLI), (B) 

temperature, (C) relative humidity (RH), and (D) vapor pressure deficit (VPD), recorded 

continuously throughout the experiments timeline. Panels (E–F) present physiological responses 

averaged across all plants measured in each experiment. (E) Average plant weight, illustrating 

the typical pattern of plant development, where plants begin small and progressively 

accumulate biomass over time. (F) Average daily transpiration per plant, reflecting physiological 

responses to both environmental conditions and developmental stage. Gaps along the x-axis 

correspond to time periods when no relevant experiments were conducted or when the 

greenhouse was inactive. Note that different experiments may overlap in time. 
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2.6 Machine learning models for estimating daily transpiration. 290 

2.6.1 Decision Tree: 291 

Decision trees are a simple, yet powerful machine learning model used for classification and regression 292 

tasks. They recursively split the data into subsets based on the features to create a tree-like structure. 293 

At each node, the decision tree selects the feature and split point that minimizes impurity, aiming to 294 

create more homogenous subsets. The final predictions are made based on average value (for 295 

regression) of the samples in the leaf nodes. Decision trees are interpretable and can capture complex 296 

relationships in the data, but they may suffer from overfitting and lack generalization ability. The 297 

induction of decision trees is one of the oldest and most popular techniques for learning discriminatory 298 

models, which has been developed independently in the statistical (Breiman et al., 1984; Mingers, 299 

1989) and machine learning (Quinlan, 1993) communities (Fürnkranz, 2011). 300 

2.6.2 Random Forest: 301 

Random Forest is an ensemble learning technique based on decision trees. It builds multiple decision 302 

trees, each trained on a random subset of the data and a random subset of the features. The final 303 

prediction is obtained by averaging (for regression) the predictions of individual trees. Random Forest 304 

overcomes the overfitting issue of decision trees and improves the model's performance and 305 

robustness. It can handle high-dimensional datasets and capture interactions between features, 306 

making it a popular choice for various applications. 307 

The random forest or decision tree forest is an algorithm created in 1995 by Ho (Ho, 1995), then 308 

formally proposed by scientists in 2001 (Breiman, 2001; Cutler & Zhao, 2001). 309 

2.6.1 XGBoost model 310 

eXtreme Gradient Boosting (XGBoost) is a method, initially proposed by (T. Chen & Guestrin, 2016) , 311 

that generally generates high accuracy and fast processing time while being computationally less costly 312 

and less complex. The XGBoost model is a scalable machine learning system for tree boosting. The 313 

XGBoost model integrates several “weak” learners for developing a “strong” learner through additive 314 

learning. Parallel computation is automatically implemented during training to enhance computational 315 

efficiency (Fan et al., 2021). 316 

2.6.3 Artificial neural networks: 317 

Neural networks are a class of deep learning models inspired by the structure and function of the 318 

human brain (Haykin, 2009; Rosenblatt, 1958). They consist of interconnected nodes (neurons) 319 

organized into layers. Each node applies an activation function to the weighted sum of its inputs to 320 
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produce an output (Fukushima, 1969). As many ML models, Neural networks can learn complex and 321 

nonlinear relationships in the data through the process of forward and backward propagation during 322 

training (Leibniz, 1920).  323 

2.7 Hyperparameters tuning: 324 

Hyperparameter tuning is the process of discovering the optimal configuration for the 325 

hyperparameters of a machine learning model to achieve the best performance. Hyperparameters are 326 

external configuration settings established before the training process and are not learned from the 327 

data. Examples included learning rates, regularization strengths, and the number of trees in a random 328 

forest. 329 

This process of hyperparameter tuning was carried out through cross-validation grid search on the 330 

training data. Grid search cross-validation is a method employed to systematically explore a vast array 331 

of combinations of hyperparameter values. By leveraging 5-fold cross-validation, the dataset was 332 

divided into 5 subsets, allowing for multiple rounds of training and validation. This approach aimed to 333 

find the optimal set of hyperparameter values and ensure the model's robustness by evaluating its 334 

performance across different subsets of the training data. The optimal hyperparameter values, and the 335 

options we tested are summarized in Table 2.  336 

  337 
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Table 2: Hyperparameters. Adjusting these parameters change the learning ability, so the model would not underfit neither overfit the dataset. 338 

Implementing GridSearch cross-validation  on 90% of the training data set. Systematically all the possible combinations of the Hyperparameter options were 339 

evaluated and the optimal setting was retained. We used the 5-fold cross validation splitting strategy to test the optimal parameters on 5 different subsets of 340 

the training dataset.  341 

model Hyperparameter Explanation Options Optimal 
value 

Combinations 

Decision 

Tree 

 

min_samples_split The minimum number of samples required to split an internal node.  [2,3,4] 4 60 candidates  

* 5 folds = 300 

fits 

min_samples_leaf The minimum number of samples required to be at a leaf node of the trees. [1,2,3,4] 4 

max_depth The maximum depth of a decision tree.  [None, 5,7,10,12] 10 

Random 

Forest 

 

n_estimators The number of decision trees (estimators) or boosting rounds in the random forest 
ensemble.  

[50,60,70,80,100] 100 240 

candidates * 5 

folds = 1200 

fits 

min_samples_split Explained above [2,3,4,5] 4 

min_samples_leaf Explained above [1, 2] 1 

max_depth Explained above [None, 12,15] 15 

bootstrap This hyperparameter determines whether bootstrap samples (sampling with 
replacement) are used when building trees in the random forest.  

[True, False] True 

XGBoost n_estimators Explained above [60, 80, 100] 100 1296 

candidates*5 

folds = 6,480 

fits 

 

min_child_weight Minimum sum of sample weight (hessian) of the smallest leaf node. Larger values, 
preventing splits that have a smaller hessian value. 

[1, 2, 4, 5] 1 

max_depth Explained above [3, 5, 6, 7] 7 

gamma Minimum loss reduction required to make a further partition on a leaf node of the 
tree (helps in pruning the tree).  

[0, 0.1, 0.2] 0 
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342 

reg_lambda L2 regularization term on weights. It adds a penalty to the loss function based on 
the size of the weights.  

[0, 1, 2] 0  

learning_rate scales the contribution of each tree in the ensemble. A smaller learning rate makes 
the algorithm more robust by reducing the step size. 

[0.3, 0.1, 0.01] 0.1 

Neural 

Network 

num_units –  

layer 1 

controls the number of units (neurons) in each hidden layer of the neural network. 
It represents the width of the network.  

[32, 64, 96, 128, 160, 

192, 224, 256, 288] 

32 1296 

candidates * 

40 epoch = 

51,840 fits 

num_units –  

layer 2 

Explained above [32, 64, 96, 128, 160, 

192, 224, 256 ,288] 

288 

optimizer determines the optimization algorithm used to update the model's weights during 
training. The code considers two options: 'adam' (Adaptive Moment Estimation) and 
'rmsprop' (Root Mean Square Propagation) 

['adam', 'rmsprop'] rmsprop 

Activation - Layer1  The activation function applied to the output of each neuron in the hidden layers. 
Common choices are 'relu' (Rectified Linear Unit) and 'tanh' (Hyperbolic Tangent). 
Activation functions introduce non-linearity to the network, enabling it to learn 
complex patterns. 

['relu', 'tanh'] tanh 

Activation- Layer 2 Explained above ['relu', 'tanh'] tanh 

learning_rate The learning rate controls the step size at which the optimizer updates the model's 
weights in each iteration during training. It is a crucial hyperparameter as it affects 
the speed and stability of training.  

[0.001, 0.01] 0.01 
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2.8 Modelling process 343 

We implemented our models using a robust set of Python libraries tailored for statistical computing, 344 

data manipulation, and machine learning. Specifically, we used: Scipy (Virtanen et al., 2020), for 345 

conducting statistical tests, Numpy (Harris et al., 2020), for high-performance numerical operations, 346 

Pandas (Mckinney, 2010; The pandas development team, 2020), for data handling and manipulation, 347 

Sklearn (Pedregosa et al., 2011) for machine learning algorithms and model evaluation tools, Keras 348 

(Chollet, 2015) and TensorFlow (Abadi et al., 2016) for building and training neural network models.  349 

2.9 Cross-Validation and Performance Evaluation 350 

Cross-validation was conducted on the dataset to validate model stability and reliability. We used 10-351 

fold cross-validation, allowing each subset of data to be used as both training and testing sets 352 

iteratively, ensuring comprehensive performance assessment. This method not only helps in assessing 353 

the performance across different slices of data but also in comparing the effectiveness of different 354 

models under varying conditions (Table 3). 355 

The final model evaluation was performed on the holdout set, using metrics such as Root Mean Square 356 

Error (RMSE), Mean Absolute Error (MAE), and the R² statistic to compare the predictions and actual 357 

measurements (Table 4). These metrics provided a detailed measure of model accuracy, prediction 358 

error, and the proportion of variance explained by the model. 359 

2.10 Model Validation Using External Greenhouse and Growth Room Data 360 

To further evaluate the generalizability of our machine learning models, we tested their performance 361 

on two external datasets collected independently from the training and validation data. The first 362 

dataset was obtained from a greenhouse facility located in Tel Aviv University , operated entirely by a 363 

different research group, using separate personnel, experimental planning, and management 364 

protocols. Although this facility employed the same phenotyping platform (PlantArray; PlantDitech, 365 

Israel) and followed a similar measurement protocol, the experiments were conducted independently 366 

from those at the I-CORE center in Rehovot. Data were collected using the SPAC analytics system and 367 

included plant weight and transpiration measurements from experiments carried out between April 368 

17, 2024, and November 16, 2024. 369 

For external testing, we selected three individual plants, each from a different experiment. Since the 370 

Tel Aviv team includes soil bulk weight in their lysimeter measurements, we standardized the datasets 371 

by adjusting the initial seedling weight to 10 g to match the conventions used in our own experiments, 372 

where only net plant biomass is recorded. This adjustment ensured consistency and comparability 373 

between the datasets. 374 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 20 

The second external dataset was collected from our indoor growth room (Room 101; Fig. S2), located 375 

within the I-CORE center, but operated under different environmental conditions and experimental 376 

constraints compared to the main greenhouse. This dataset offers an independent context due to the 377 

controlled lighting, humidity, and temperature conditions specific to growth room setups. 378 

Both external datasets were evaluated using our Model Testing App, a web-based interface designed 379 

to assess model performance on new user-provided datasets. Users with SPAC analytics access can 380 

upload their experimental data and receive transpiration predictions generated by our pre-trained 381 

models, along with performance metrics for direct comparison against measured values. The 382 

application is publicly available at: https://test-daily-transpiration-model-spac-user.streamlit.app/. 383 

2.11 feature importance 384 

To interpret the predictions and understand the importance and contribution of each feature to 385 

building the models several feature important tests were presented : 386 

2.11.1 Impurity-based feature importance 387 

Impurity-based feature importance is a technique commonly employed in decision tree-based 388 

machine learning models, to assess the significance of individual features in making predictions. The 389 

method calculates the contribution of each feature by measuring how much it reduces the impurity 390 

(e.g., Gini impurity or entropy) in the model's decision nodes. This approach is simple, computational 391 

efficient, and interpretable, as it provides a clear ranking of features based on their impact. However, 392 

Impurity-based feature importance tends to favor variables with more categories or levels, which can 393 

lead to biases.  394 

2.11.2 Permutation feature importance  395 

Permutation feature importance is a technique used to evaluate the significance of individual features 396 

in a machine learning model. The process involves systematically shuffling the values of a single feature 397 

in the dataset and observing the impact on the model's performance. By comparing the model's 398 

performance before and after the permutation, a decrease in performance indicates that the feature 399 

is crucial, as its alteration disrupts the model's predictive accuracy. This approach does not require 400 

retraining the model and can be applied to various algorithms (not just tree-based models). However, 401 

it may not capture feature interactions and is most effective when dealing with uncorrelated features. 402 

In our study, the “sklearn.inspection.permutation_importance” was used. 403 

2.11.3 SHapley Additive exPlanations (SHAP) 404 
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SHapley Additive exPlanations (SHAP) by Lundberg et al., 2017 is a method to explain individual 405 

predictions. SHAP is based on the game theoretically optimal Shapley values (Molnar, 2022). Shapley 406 

values provide a mathematically fair and unique method to attribute the payoff of a cooperative game 407 

to the players of the game (Merrick & Taly, 2020; Shapley, 1953). SHAP values help us understand the 408 

role of each feature in a prediction by calculating how much each feature has pushed the prediction 409 

higher or lower, compared to prediction without that feature. For instance, applying SHAP to our 410 

model (Fig. S4 and see Fig. 6) revealed that temperature significantly influences predicted daily 411 

transpiration. Lower temperatures (depicted in blue) correlate with negative SHAP values, pushing 412 

predictions downward, while higher temperatures (depicted in red) associate with positive SHAP 413 

values, pushing predictions upward. Therefore, in this context, the model suggests that transpiration 414 

tends to be lower at lower temperatures.  The SHAP library in python was used (Lundberg et al., 2017). 415 

For more info see 416 

https://shap.readthedocs.io/en/latest/example_notebooks/api_examples/plots/beeswarm.html# 417 

 418 

2.12 Statistical Analysis: 419 

 420 

Several statistical methods were employed in this study. To assess the correlation between features, 421 

we used the correlation coefficient (r), which measures the strength and direction of the linear 422 

relationship between two variables. For evaluating model performance, we used R² (coefficient of 423 

determination), which represents the proportion of variance in the dependent variable that is 424 

predictable from the independent variables. T-tests were used to compare the means of two groups 425 

and to assess whether there were significant differences between them. P-values (Pv) associated 426 

with the t-tests were used to determine statistical significance, with a threshold of Pv < 0.05 427 

considered significant. 428 

For categorical variables, we used a chi-square test to evaluate associations between categories. The 429 

chi-square value indicates the magnitude of the discrepancy between observed and expected values, 430 

while the p-value reveals whether this discrepancy is statistically significant. To compare multiple 431 

groups and determine whether their means differed significantly, we applied ANOVA (Analysis of 432 

Variance), calculating the F-statistic and corresponding Pv to evaluate overall model significance. 433 

Additionally, when group variances were unequal, we used Welch’s test as a robust alternative to 434 

ANOVA, reporting the F-ratio and Pv to verify the statistical significance of the differences.  435 
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3. Results  436 

From June 2018 to March 2024, multiple experiments were conducted in our greenhouses using the 437 

PlantArray systems. These experiments yielded continuous data on both plant physiology and 438 

environmental conditions. We collected, cleaned, labeled, and averaged the data to obtain daily 439 

values, as described in the methods section 2.4. For this research, we have used only well irrigated 440 

data (soil water content at the end of the day was higher than the total daily transpiration; see methods 441 

2.3.2) , resulting in a dataset comprising 6115 observations, with each observation representing a 442 

single plant, and its ambient conditions in a day of measurement. 443 

This article investigates the environmental responses of tomato and cereal crops, cultivated during 444 

summer and winter seasons respectively. Our findings reveal significant differences in environmental 445 

conditions between the two (Fig. 4A and Fig. S3). Tomato plants were exposed to significantly higher 446 

summer temperatures (grand mean 25.3°C for tomatoes and 18.6°C for cereals, p < 0.001; Fig. 4A1) 447 

and relative humidity (grand mean 56.15% for tomatoes and 52.49% for cereals, p < 0.001; Fig. 4A2) 448 

compared to the winter conditions experienced by the cereals. Consequently, tomatoes plants were 449 

exposed to higher daily average vapor pressure deficit (VPD) than cereals (grand mean 1.53 kPa and 450 

1.22 Kpa respectively; Pv<0.001 ; Fig. 4A3). The Daily Light Integral (DLI) for tomatoes was also greater 451 

(Pv<0.001), with an average of 18.27 mol/m²/day and a peak of 33.99 mol/m²/day, whereas cereals 452 

recorded a lower average DLI of 11.36 mol/m²/day and a maximum of 28.96 mol/m²/day (Fig. 4A4). 453 

Despite cereals having a higher average plant weight (148.67 g) compared to tomatoes (111.54 g), 454 

their transpiration rates were significantly lower than those of tomatoes (average 160.24 g/day and 455 

318.32 g/day respectively; Pv <0.001; Fig. 4A5, 4A6). This comparative analysis underscores the distinct 456 

environmental adaptabilities and physiological responses of these crops under varying seasonal 457 

conditions. 458 

The data, presents a relatively high correlation between DLI and temperature (r = 0.75) and a minor 459 

correlation between transpiration and plant weight (r = 0.61; Fig. 4B). VPD is relatively corelated to 460 

temperature (r = 0.67), RH (r = - 0.71) and DLI (r = 0.54) but not to transpiration (r = 0.21; Fig. 4B).  461 
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  462 
* 

Figure 4: Data visualization. The data was collected between June 2018 and February 2022, by the lysimeter 

system, and preprocess to daily values. (A) Data variety between tomato and cereals crops (3975 / 2140 

observations respectively). Box and Whisker of daily (A1) temperature, (A2) RH, (A3) VPD, (A4) DLI, (A5) plant 

weight and (A6) plant transpiration (for expansion see Figure S1). Asterisks indicate statistical difference, t test; 

Pv<=0.001. (B) Pearson correlation coefficient chart of continuous features: Temperature, RH, VPD, DLI, plant 

weight and transpiration (for expansion see Figure S1). P-values (Pv) are presented in bracket.  
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3.1 Model precision and accuracy 463 

Machine learning models were trained using the features: plant weight, temperature, RH, VPD, DLI, 464 

plant type, and soil type to predict daily transpiration (Table 1.). Hyperparameters for all models were 465 

finely tuned using a Cross-Validation Grid Search on 90% of the training dataset.  466 

Our final models underwent rigorous evaluation through a 10-fold cross-validation process. This 467 

involved partitioning the dataset into 10 subsets, with 90% allocated for training and the remaining 468 

10% for testing, repeated across 10 iterations. Such meticulous methodology facilitated 469 

comprehensive assessment under diverse training scenarios. To ensure robust performance 470 

evaluation, we conducted statistical analyses, including Root Mean Square Error (RMSE) and R² 471 

calculations across the 10 folds. Notably, while the Decision Tree model displayed respectable 472 

performance, the models Random Forest, XGBoost, and Neural Network showcased significant 473 

accuracy (Pv < 0.05, Table 3). Random Forest with the mean R² of 0.88 and an RMSE of 86.93. Similarly, 474 

XGBoost and Neural Network models yielded competitive mean R² values of 0.89with RMSE values of 475 

85.19 and 84.63, respectively. Neural Network, however, distinguished itself as the slowest model, 476 

completing the 10-fold cross-validation in 9.66 min (Pv < 0.05, Table 3). 477 

Table 3:  Comparison of evaluation scores among the four methods models.  478 
The average of 10-fold Cross validations are presented.  479 

 480 

 481 

 482 

 483 

An ANOVA test was conducted to statistically evaluate performance differences among the 10-fold 484 
models scores, followed by Tukey's Honest Significant Difference (HSD), differences are indicated by 485 
letters. 486 

3.2 Testing the models using hold out experiments. 487 

Randomly selected experiments were separated from the rest of the data to serve as a validation 488 

dataset for testing the models' performance on unseen data. The hold out data structure was different 489 

from the data used to tune and train the models; with a lower temperature (T test = 14, p ≤ 0.001), 490 

different ratio of Tomato: Cereal (Chi-square = 94, Pv < 0.001), and a higher correlation between plant 491 

weight and transpiration (Table S1, Fig. S1). Moreover, the distribution of transpiration values in the 492 

holdout data significantly differed from those in the training dataset (Pv <0.001). Notably, the upper 493 

quartiles of transpiration in the training and holdout datasets were 379g and 255g respectively (Fig. 494 

S5 and 5A). When the trained models were applied to this new dataset, the Random Forest model 495 

Model RMSE R2 Run time (sec) 

Decision tree 104.51a 0.83a 0.01a 

Random forest 86.93b 0.88b 1.65a 

XGBoost 85.19b 0.89b 0.24a 

Neural Network 84.63b 0.89b 57.99b 
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demonstrated high accuracy in predicting transpiration, with a correlation coefficient (r) value of 0.91 496 

(Fig. 5B). The residual plot (Fig. 5C) shows that the model's residuals are mostly centred around zero, 497 

indicating good predictive performance. Note that the distribution is wider where the transpiration is 498 

higher.  The XGBoost exhibited the highest R2 (0.82) and the lowest RMSE (88.41 g) among all models 499 

(Table 4, N.S.). The Random Forest Regressor model also performed well (R2= 0.81, RMSE = 90.77 g). 500 

Conversely, the Neural Network exhibited higher errors (N. S.), with an RMSE of 106 g and an MAE of 501 

79.11 g. On the holdout data, Tukey HSD test revealed no significant differences between models 502 

(ANOVA: F= 1.7, Pv = 0.15).  503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

  519 

 520 

 521 

  522 

Figure 5: Random forest model evaluation on five holdout experiments (A) Histogram distribution of daily 

transpiration measured in the holdout data. (B) Goodness of fit for the Random Forest model predictions, 

comparing predicted against observed values. The dashed gray line represents an exact fit (Y=X), indicating where 

the model's predictions perfectly match the observations. The R2 and the associated p-value (Pv) are stated on 

the graph to indicate the strength and significance of the relationship. (C) Residuals (observed minus predicted 

values) plotted against predicted values to assess any systematic deviations from the model. Higher values, which 

are less frequent as shown in (A), exhibit increased scatter and reduced correlation, as illustrated in (B) and (C).  
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 523 

 Table 4: model evaluation statistics on the holdout experiments data. 524 

 1 Relative error, also known as the Relative RMSE, is a measure that quantifies the accuracy of 525 

predictions relative to the scale of the actual values. is calculated as the RMSE divided by the mean 526 

of the actual values 527 
2 The mean absolute residual was calculated. 528 
3 Tukey test on the residuals between the predicted and actual values. Different letters indicate 529 

significant difference in Tukey HSD test Pv<0.05. 530 

Hyperparameter tuning (Table 2) slightly improved the XGBoost model performance on the holdout 531 

data, increasing R² from 0.807 to 0.81. To assess whether the tuning prosses improvement was 532 

statistically meaningful, we tested the tuning performance across 21 different random seeds, each 533 

resulting in a different holdout set. For each subset, we compared model performance with and 534 

without hyperparameter tuning. There was no significant difference between the untuned and tuned 535 

models (RMSE difference of 0.19 g, paired t test Pv= 0.63; Fig. S6). 536 

3.2 Model Performance on Independent Greenhouse and Growth Room Experiments 537 

To test the generalizability of our models, we evaluated them on two independent datasets: one 538 

from an externally operated greenhouse in Tel Aviv, and one from our controlled growth room (Room 539 

101). The Tel Aviv facility uses the same platform but is operated by a different team and follows 540 

independent experimental procedures, while Room 101 provides a distinct indoor environment 541 

managed by our own research group. For each experiment, a representative plant was selected to 542 

evaluate the models. For more details see Methods Section 2.10. 543 

The models showed good performance on tomato plants across both sites. In Tel Aviv, the Random 544 

Forest model achieved an R² of 0.71, while in Room 101 it reached 0.76, with lower RMSE in the 545 

latter. For cereal plants in Tel Aviv, XGBoost achieved the lowest RMSE (58.12 g), but the R² was only 546 

0.33, indicating less consistency in capturing variability.  547 

Table 5:  Model Performance on Independent Greenhouse Experiments Using the Model Testing 548 
App 549 

Model R^2 
RMSE 

(g) 
MAE 

Relative 
error1 (%) 

Residual2 (g) 
Residual2 

(%) 
Tukey 
HSD3 

Decision 
Tree 

0.77 98.65 75.53 64.71 75.53 64.71 a 

Random 
Forest 

0.81 90.77 69.71 60.12 69.71 60.12 a 

XGBoost 0.82 88.41 66.71 57.37 66.71 57.37 a 

Neural 
Network 

0.74 106.00 79.11 64.60 79.11 64.60 a 
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 550 

3.3 Feature importance 551 

Feature importance was assessed through various techniques. For tree-based models, impurity 552 

metrics were employed, permutation and SHAP values were used. Interestingly, plant weight and 553 

temperature were identified as crucial predictors for transpiration (Fig. 6A) and the SHAP feature 554 

importance test (Fig. 6B) on  the Random Forest model predicting transpiration. The horizontal spread 555 

of dots for each feature indicates the range of SHAP values, with a wider spread denoting greater 556 

impact variability on model output. Color signifies feature value magnitude, with red indicating high 557 

and blue indicating low values. Plant weight, temperature, and potting media are the most influential 558 

features in predicting transpiration, as evidenced by the wider spread of SHAP values, indicating a 559 

stronger effect on model predictions. In contrast, VPD and DLI show a narrow spread with randomly 560 

distributed colors, suggesting a small and uniform influence on model output. Divergent color patterns 561 

in potting media reveal varying impacts on predictions, with soil (encoded as 1) increasing transpiration 562 

and sand (encoded as 0) decreasing it. Furthermore, the cereal plant type (encoded as 1) is associated 563 

with reduced transpiration, while the tomato (encoded as 0) contributes to increased transpiration. 564 

  565 

Greenhouse 
facility 

dates Plant ID 
Plant 
type 

Best Model RMSE (g) R2 

Tel Aviv 15/07/2024- 31/07/2024 2366 tomato Random forest 81.38 0.71 

Tel Aviv 02/10/2024- 16/11/2024 2470 cereal XGBoost 58.12 0.33 

Room 101 13/09/2024- 08/10/2024 638 tomato Random forest 59.58 0.76 
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 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 

3.4 Holdout data splitting methods. 584 

In this section, we assess the robustness of our data analysis using three distinct partitioning strategies: 585 

temporal splits, greenhouse-based splits, and random experiment-based splits. These methods help 586 

us evaluate how reliable is our data and how well our models perform across different timeframes, 587 

environmental conditions, and experimental setups. 588 

For data partitioning, the temporal split involved segregating data by leaving out a different year for 589 

each iteration, using the remaining years for training. This approach allowed us to assess the model's 590 

ability to adapt to temporal variations. The greenhouse-based split used data from one greenhouse 591 

for training and testing, while data from another was held out, enabling evaluation of model 592 

generalizability across different greenhouse environments. In the random experiment-based split, 593 

experiments were randomly selected as holdouts, with the remaining used for training, aiming to 594 

gauge the model's robustness across diverse experimental setups. R2 scores analysis indicated no 595 

significant performance differences among the splitting methods: temporal split scored approximately 596 

0.54 (median 0.65), random experiment-based split achieved a mean of 0.62(median 0.60), and 597 

Figure 6:  Feature importance contribution 

to the model prediction accuracy. Plant 

weight and temperature have a high 

importance overall. Testing feature 

significance in Random Forest model; (A) 

Feature importance using built in impurity 

test (gray), permutation (black) and SHAP 

values (white). Y axes are the feature 

importance scores normalized by a Min-Max 

scaling method, High score is given to the 

more influential features. (B) SHAP 

presentation of Feature importance. Every 

observation has one dot in each row. The 

position of the dot on the x-axis is the impact 

of that feature on the model's prediction for 

the observation, and the color of the dot 

represents the value of that feature for the 

observation. A larger spread of dots suggests 

that the feature has a more significant 

impact on the model's predictions. 
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greenhouse-based split averaged 0.62 (Fig. 7; Welch’s test: F = 0.68, Pv = 0.53). Notably, variations in 598 

the random seed introduced considerable variability in the randomly selected holdout sets, while 599 

changes across different years also added diversity. 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

4. Discussion  610 

In this study, we explored the dynamic of daily transpiration in well-irrigated plants using advance 611 

machine learning models. Our unique dataset, collected over seven years, included high-resolution 612 

physiological traits and meteorological measurements from two greenhouses. Our findings indicate 613 

that our ML models, particularly Random Forest and XGBoost, showed respectable performance in 614 

predicting daily transportation. Additionally, both SHAP and feature importance scores revealed that 615 

plant weight and daily mean temperature are the most influential factors in these predictions. This 616 

discussion addresses these findings and their potential applications in agriculture. 617 

4.1. Seasonal Environmental Effects on Plant Weight and Transpiration 618 

Fig. 4 highlights the distinct environmental parameters experienced by summer tomato and winter 619 

cereal, as well as the significantly higher daily transpiration of the tomatoes. Interestingly, the plant 620 

weight (Fig. 4A5) of cereals was significantly higher than that of tomatoes, with averages of 148.67 g 621 

and 111.54 g, respectively. This result was unexpected, given the common correlation between 622 

larger annual plant size—which is closely related to transpiring leaf area (Halperin et al., 2017) —and 623 

higher transpiration rates (Fig. 4B; Transpiration-Plant Weight; r=0.6). However, this discrepancy 624 

highlights how seasonal environmental variations can influence transpiration.  625 

4.2.    Model performance and Accuracy 626 

Figure 7: Comparing Data Splitting Methods for Holdout Data 

Set. The distribution of R2 scores for a tuned random forest 

model, evaluated using three distinct data splitting methods. 

The "Year" method separates the data chronologically, training 

on observations from six years while holdout data was from 

one excluded year, repeatedly applied across all available 

years. The "Random" method involves randomly selecting 

entire experiments as the holdout dataset. Different random 

seeds lead to varied holdout experiments, resulting in a broad 

range of scores. The "Greenhouse" method uses data from the 

main greenhouse for training and data from a secondary, 

different-sized greenhouse for testing.  
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The effectiveness of ML models in predicting daily transpiration was tested. The tuned models were 627 

trained and evaluated using 10-fold cross-validation. Random Forest and XGBoost performed 628 

similarly, with XGBoost being 7 times faster (Table 3). The XGBoost model achieved an RMSE of 85.19 629 

g with and R2=0.89. Neural Networks had comparable accuracy but much longer runtimes 630 

Testing our model on a holdout dataset, to further validate our model accuracy and generalizability. 631 

The XGBoost model demonstrates the strongest performance in predicting the daily transpiration (R2 632 

= 0.82, RMSE = 88.41g). Although there is no significant difference in the residuals between the 633 

XGBoost and the Random Forest models.   634 

Interestingly, although hyperparameter tuning (Table 2) improved model performance slightly, 635 

testing tuning impact across different random seeds revealed that the improvement was not 636 

statistically significant on the holdout data (Fig. S6). This lack of consistent performance gain may be 637 

due to the model already being well-calibrated with its default parameters, the limited benefit of 638 

tuning given the available feature set, or potential overfitting to the training data during the tuning 639 

process. 640 

Our results align with other ML models that have predicted actual transpiration. For instance, Amir et 641 

al. (2021) reported that their Random Forest model had R² = 0.81, when predicting sap flow in cherry 642 

tomatoes Similarly, Fan et al. (2021) achieved R² values from 0.816 to 0.95, using sap flow data from 643 

maize. Ohana-Levi et al. (2020)  got R² values of up to 0.90 when predicting grapevine water 644 

consumption using drainage lysimeter data. Pagano et al. (2023) present a table summarizing several 645 

studies that predicted actual transpiration, with an average maximum R2 of 0.87 for these 646 

predictions. We propose that the accuracy of our models (R2 = 0.81-0.89) can be attributed to the 647 

precision of our transpiration measurements, the size of our dataset, and the specific features used 648 

during model training (Table. 1). Overall, these findings validate the possibility of using ML models to 649 

predict daily transpiration.  650 

Testing our models on other experimental setups, demonstrate the models practical application and 651 

external validity in independent environments (Table 5). This external validation provides meaningful 652 

insights into the robustness, consistency, and adaptability of our models under varying conditions. 653 

Notably, the optimal model differed depending on the plant type and environment. For tomato 654 

plants grown in both the Tel Aviv greenhouse and our controlled growth room (Room 101), the 655 

Random Forest model outperformed others, achieving R² values of 0.71 and 0.76, with 656 

corresponding RMSE values of 81.38 g and 59.58 g, respectively. These results are consistent with the 657 

strong performance observed in our holdout experiments (see Fig. 5), reinforcing the model’s 658 

reliability. In contrast, for cereal plants grown in Tel Aviv, the XGBoost model demonstrated the 659 
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lowest RMSE (58.12 g), suggesting high predictive precision. However, the relatively low R2 of 0.33 660 

indicated that, while the model’s predictions were close in absolute terms (low RMSE), they did not 661 

align well with the variation in actual transpiration values – suggesting   that the model failed to 662 

explain the full range of responses observed in the cereal plants. This may be due to the lower 663 

representation of cereal data (2140 observation versus 3975 for tomato) and the narrower range of 664 

environmental condition under which cereal were grown, as evidence in Fig. 4A (temperature, and 665 

DLI) which show reduce variability for cereal compared to tomatoes.  This divergence in model 666 

performance across plant types and conditions emphasizes the importance of model selection 667 

tailored to specific experimental contexts 668 

We suggest that future work should expand the quantity and variability of our labeled datasets by 669 

periodically pooling standardized data from additional lysimeter installations. This would enhance 670 

model robustness and enable validation across a broader range of crops and climatic conditions. As 671 

this global dataset matures, it may become necessary to develop a simple calibration factor—672 

analogous to the FAO-56 crop coefficient—to harmonize measurements across different systems. 673 

4.3 Key factors Influencing transpiration. 674 

Artificial Intelligence models are often considered “black boxes” due to their complexity, 675 

consideration of multiple parameters, and the intricate statistical calculations involved in their 676 

algorithms (Azodi et al., 2020). Feature importance analysis enables us to understand the strength of 677 

each feature in the model’s predictions and in the transpiration processes.  678 

Our Feature importance analysis indicates that plant weight plays the most significant role in 679 

predicting daily transpiration (Fig. 6). We find this result very rational as the correlation between 680 

plant biomass and transpiration is well known (Lambers et al., 2008; Lazar, 2003). As larger plants 681 

have more leaves (and thus more stomata) leading to more water loss. Similarly, other studies have 682 

found that canopy size in olives (Sperling et al., 2023) and plant height in maize (Z. Chen et al., 2020) 683 

are crucial factors. Additionally, leaf area index has been effectively used in other studies to predict 684 

sap flow (Balasubramanian & Thirugnanam, 2023), or grapevine water consumption(Ohana-Levi et 685 

al., 2020) highlighting the broader applicability of leaf and plant size in transpiration models. 686 

While direct measurement of plant weight may not be practical in large-scale field applications, it 687 

serves as an important physiological proxy for transpiration in controlled settings. Future work could 688 

explore remote sensing or image-based methods as scalable alternatives to integrate plant size 689 

metrics into transpiration models. 690 
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While plant age might replace plant weight for ease, as higher transpiration rates are often observed 691 

during late vegetative stages (Grulke & Retzlaff, 2001; Juárez-López et al., 2008). However, in our 692 

data, the correlation between plant age and transpiration is weak (days-transpiration; r=0.38, Fig. 693 

S1). This due to inconsistencies in documenting plant age in our database, including it as a feature 694 

may introduce bias.  695 

Vapor pressure deficit (VPD) integrates the effects of both temperature and relative humidity (RH), 696 

with the literature often treating them as equally influential on transpiration. However, these two 697 

environmental factors not only interact reciprocally—such that a rise in temperature typically 698 

coincides with a decrease in RH, and vice versa—but also have distinct direct impacts on plant 699 

physiology. For example, while RH primarily affects the atmospheric demand for water vapor, 700 

temperature directly influences enzymatic activity and metabolic processes within the plant. As a 701 

result, separating the independent contributions of temperature and RH to transpiration responses is 702 

challenging. Although VPD has traditionally been considered a key factor influencing stomatal 703 

conductance and overall plant transpiration (Song et al., 2022; Tanny, 2013; Zhou et al., 2019) several 704 

studies have acknowledged the difficulty of disentangling these interdependent drivers (Bunce, 2006; 705 

Grossiord et al., 2020), often focusing on VPD as the primary determinant of water loss rather than 706 

parsing the relative roles of its components. Against this backdrop, the findings from this work 707 

indicate that temperature exerts a greater influence than RH.  708 

In fact, temperature was the second most important factor in our feature importance hierarchy, 709 

making it our most critical environmental predictor of daily transpiration (Fig. 6). This aligns with its 710 

previously observed effects on physiological processes, as high temperatures drive transpiration by 711 

increasing water vapor pressure (Aschale et al., 2023; W. Liu et al., 2020). Additionally, it directly 712 

affects the physiological responses of plants, such as stomatal conductance (Haijun et al., 2015). 713 

Some researchers even found temperature to be the most critical factor influencing 714 

evapotranspiration (ET0), especially in spring and summer season when it contributes to as much as 715 

46% of the variance of ET0 (Aschale et al., 2023; W. Liu et al., 2020). Nevertheless, our results 716 

suggest that temperature alone may have a much stronger effect than RH. Thus, the high feature 717 

importance assigned to temperature in our model may indicate its predominant role in controlling 718 

transpiration, independent of the relative humidity component of VPD. Further studies are needed 719 

to confirm and clarify this distinction . 720 

Potting media is the third most important feature (Fig. 6B). SHAP analysis showed that potting media 721 

are completely separated, and sand (blue) has negative effect on the transpiration compared to the 722 
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soil (red). This is due to differences in water availability, as soil typically retains more water than 723 

sand, leading to higher transpiration in plants grown in soil(Cai et al., 2024). 724 

We were surprised to find that plant type had a relatively low importance in predicting transpiration 725 

(Fig. 6A). Genotype by Environment (GxE) interactions suggest that different crops like tomatoes and 726 

cereals, with potential variations in stomatal density, would influence transpiration rates (Des Marais 727 

et al., 2013; Fournier-Level et al., 2011). A possible explanation is that the model may identify plant 728 

type indirectly through weight (Fig. 4A5, Fig. 6A). However, if the model’s assessment holds, it could 729 

signal a ground-breaking insight into the plant transpiration prediction.  730 

The low importance score of the Daily Light Integral (DLI) was unexpected, as it contradicts the 731 

common understanding of the high significance of solar radiation (Tanny, 2013). It is possible that in 732 

indirect models based on eddy covariance (Pagano et al., 2023) and FAO56 estimation (Başağaoğlu et 733 

al., 2021), radiation plays a more crucial role, whereas in models using direct measurements such as 734 

sap and lysimeters (current article), its importance may be less pronounced. Another consideration is 735 

that daily averaging might diminish the perceived importance of light, while more granular data 736 

collected at hourly or minute intervals may reveal its greater significance (as in these works: Kiraga et 737 

al., 2023; Li et al., 2020).  738 

Future studies should explore the use of more granular data, such as hourly or minute-level 739 

measurements, instead of daily averages, to better capture the influence of all meteorological 740 

parameters on transpiration. Daily averaging can obscure the dynamic effects of factors like solar 741 

radiation, temperature, and humidity, potentially underestimating their true importance. By 742 

analyzing shorter time intervals, researchers may uncover stronger correlations between these 743 

variables and transpiration, providing a clearer understanding of their interactions.  744 

It is important to note that soil water content, ambient CO₂ concentration, and wind speed were 745 

maintained at non‑stress or quasi‑steady levels during the experiments (see Materials and Methods) 746 

and were therefore not included as predictors. Because these variables are known to influence 747 

transpiration, future work should broaden the set of independent drivers and incorporate their 748 

dynamic behaviour into the machine‑learning framework and model training. 749 

We suggest that future elaboration and integration of additional ambient variables (such as CO₂ 750 

concentration, wind speed, soil electrical conductivity (EC), and soil water content) should be 751 

incorporated into the methodological framework proposed here. These factors exert direct, indirect, 752 

and interactive effects on plant behavior, and their inclusion could improve both the resolution of 753 
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hierarchical environmental controls on whole-plant transpiration and the accuracy of transpiration 754 

prediction across a wider range of environmental conditions and growth systems. 755 

 756 

4.4 Splitting methods.  757 

Splitting the data into train and validation sets can significantly impact model performance and 758 

generalizability (Shi et al., 2022). We explored three distinct data sampling methods: year (temporal), 759 

random, and greenhouse (spatial). Although the models' accuracy results didn’t show a significant 760 

difference between them, each method offered unique insights into the data strengths and the 761 

models' ability to accurately predict transpiration (Fig. 7). The year split had a median accuracy (R2) 762 

of 0.65, impacted by greenhouse differences, equipment aging, and yearly meteorological variation. 763 

Random sampling yielded a median accuracy of 0.60, with a  broader variation. Greenhouse-based 764 

splitting achieved 0.63, as the model effectively predicted transpiration in the secondary greenhouse 765 

using data from the main one, suggesting good generalizability across similar coupled setups. 766 

4.5.  Future Applications and Model-Based Decision Support 767 

 768 

In this study, we demonstrated that machine learning models can achieve respectable predictive 769 

performance using only a small number of input features. Moreover, the feature importance analysis 770 

reveals that the model's internal weighting aligns well with established physiological drivers of 771 

transpiration, reinforcing both its predictive value and biological relevance.  772 

Future research should prioritize expanding the diversity, resolution, and temporal coverage of 773 

environmental and physiological data by integrating advanced sensors for continuous spatiotemporal 774 

monitoring. This will enhance our ability to model dynamic plant-environment interactions with 775 

greater accuracy. In addition to improving prediction, AI models may enable early detection of 776 

suboptimal plant behavior and stress responses, supporting proactive decision-making in precision 777 

agriculture. These future models are particularly valuable for disentangling multifactorial influences, 778 

such as the overlapping yet distinct effects of temperature and humidity, and for revealing non-779 

intuitive interactions that might be overlooked in traditional analyses. Identifying the most influential 780 

variables also enables the strategic use of low-cost sensors in data-driven irrigation and environmental 781 

control systems. As datasets expand and model accuracy improves, predictions may increasingly rely 782 

on ambient measurements alone, with lysimeters serving primarily as initial calibration references. 783 

Ultimately, physiology-informed ML models can support scalable, sensor-efficient, and predictive crop 784 

management, bridging fundamental understanding with real-world implementation. 785 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 35 

 786 

787 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 36 

5. Acknowledgments 788 

This research was partly supported by the Shoenberg Research Center for Agricultural Science (Grant 789 

#3175006230), the Israel Science Foundation (Grant No. 1043/20), and the Israeli Committee for 790 

Budgeting for their support in the research of sustainable agriculture and food security at the Israeli 791 

Center for Digital Agriculture. We thank Dr. Nir Sade (Tel Aviv University) for generously sharing data 792 

from his PlantArray phenotyping system. 793 

Competing interests  794 

None declared. 795 

Author contributions 796 

SF and MM designed the study. SF collected the data and performed the data analyses. TN 797 

conducted the initial coding and data cleaning. SF and NA adjusted the workflow and tested the 798 

statistical models. SF wrote the first draft of the manuscript. MM (Corresponding Author) oversaw 799 

manuscript revisions, project management, and secured funding. SF, NA and MM contributed 800 

substantially to revisions. 801 

Data availability  802 

Data available on request due to privacy/ethical restrictions 803 

 804 

6. References 805 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., 806 

Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., 807 

Kudlur, M., … Research, G. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous 808 

Distributed Systems. ArXiv Preprint. www.tensorflow.org. 809 

Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential 810 

factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural 811 

Water Management, 284, 108324. https://doi.org/10.1016/J.AGWAT.2023.108324 812 

Amir, A., Butt, M., & Van Kooten, O. (2021). Using Machine Learning Algorithms to Forecast the Sap 813 

Flow of Cherry Tomatoes in a Greenhouse. IEEE Access, 9, 154183–154193. 814 

https://doi.org/10.1109/ACCESS.2021.3127453 815 

Anapalli, S. S., Ahuja, L. R., Gowda, P. H., Ma, L., Marek, G., Evett, S. R., & Howell, T. A. (2016). 816 

Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. 817 

Agricultural Water Management, 177, 274–283. https://doi.org/10.1016/J.AGWAT.2016.08.009 818 

Aschale, T. M., Peres, D. J., Gullotta, A., Sciuto, G., & Cancelliere, A. (2023). Trend Analysis and 819 

Identification of the Meteorological Factors Influencing Reference Evapotranspiration. Water 2023, 820 

Vol. 15, Page 470, 15(3), 470. https://doi.org/10.3390/W15030470 821 

Averbuch, N., & Moshelion, M. (2024). Evaluating Evapotranspiration in a Commercial Greenhouse: A 822 

Comparative Study of Microclimatic Factors and Machine-Learning Algorithms. BioRxiv, 823 

2024.01.11.575151. https://doi.org/10.1101/2024.01.11.575151 824 

Azodi, C. B., Tang, J., & Shiu, S. H. (2020). Opening the Black Box: Interpretable Machine Learning for 825 

Geneticists. Trends in Genetics, 36(6), 442–455. 826 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 37 

https://doi.org/10.1016/J.TIG.2020.03.005/ASSET/2F2EDEAA-DCFE-4EB8-A287-827 

6955F2A064F0/MAIN.ASSETS/GR3.JPG 828 

Balasubramanian, H. K., & Thirugnanam, H. (2023). Neural Networking to Predict Sap Flow Using AI-829 

Synthesized Relative Meteorological Data. 2023 3rd International Conference on Intelligent 830 

Technologies, CONIT 2023. https://doi.org/10.1109/CONIT59222.2023.10205886 831 

Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A model predicting stomatal conductance and its 832 

contribution to the control of photosynthesis under different environmental conditions. Progress in 833 

Photosynthesis Research, 90(1), 221–224. https://doi.org/10.1007/978-94-017-0519-6_48 834 

Başağaoğlu, H., Chakraborty, D., & Winterle, J. (2021). Reliable Evapotranspiration Predictions with a 835 

Probabilistic Machine Learning Framework. Water 2021, Vol. 13, Page 557, 13(4), 557. 836 

https://doi.org/10.3390/W13040557 837 

Ben-Asher, J., Garcia Y Garcia, A., & Hoogenboom, G. (2008). Effect of high temperature on 838 

photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica, 46(4), 839 

595–603. https://doi.org/10.1007/S11099-008-0100-2 840 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 841 

https://doi.org/10.1023/A:1010933404324/METRICS 842 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. In 843 

Classification and Regression Trees (1st ed.). Routledge. https://doi.org/10.1201/9781315139470 844 

Bunce, J. A. (2006). How do leaf hydraulics limit stomatal conductance at high water vapour pressure 845 

deficits? Plant, Cell & Environment, 29(8), 1644–1650. https://doi.org/10.1111/J.1365-846 

3040.2006.01541.X 847 

Cai, G., König, M., Carminati, A., Abdalla, M., Javaux, M., Wankmüller, F., & Ahmed, M. A. (2024). 848 

Transpiration response to soil drying and vapor pressure deficit is soil texture specific. Plant and Soil, 849 

500(1–2), 129–145. https://doi.org/10.1007/s11104-022-05818-2 850 

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd 851 

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. 852 

https://doi.org/10.1145/2939672.2939785 853 

Chen, Z., Sun, S., Wang, Y., Wang, Q., & Zhang, X. (2020). Temporal convolution-network-based 854 

models for modeling maize evapotranspiration under mulched drip irrigation. Computers and 855 

Electronics in Agriculture, 169, 105206. https://doi.org/10.1016/J.COMPAG.2019.105206 856 

Chollet, F. (2015). Keras: Deep Learning for humans. https://keras.io/ 857 

Cutler, A., & Zhao, G. (2001). PERT-perfect random tree ensembles. 858 

https://www.researchgate.net/publication/268424569 859 

Dalal, A., Shenhar, I., Bourstein, R., Mayo, A., Grunwald, Y., Averbuch, N., Attia, Z., Wallach, R., & 860 

Moshelion, M. (2020). A telemetric, gravimetric platform for real-time physiological phenotyping of 861 

plant–environment interactions. Journal of Visualized Experiments, 162(e61280), 1–28. 862 

https://doi.org/10.3791/61280 863 

de Meneses, K. C., Aparecido, L. E. D. O., de Meneses, K. C., & de Farias, M. F. (2020). Estimating 864 

Potential Evapotranspiration in Maranhão State Using Artificial Neural Networks. Revista Brasileira de 865 

Meteorologia, 35(4), 675–682. https://doi.org/10.1590/0102-77863540072 866 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 38 

Des Marais, D. L., Hernandez, K. M., & Juenger, T. E. (2013). Genotype-by-Environment Interaction 867 

and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment. Annual Review of 868 

Ecology, Evolution, and Systematics, 44(1), 5–29. https://doi.org/10.1146/annurev-ecolsys-110512-869 

135806 870 

Dixon, M., & Grace, J. (1984). Effect of wind on the transpiration of young trees. Annals of Botany, 871 

53(6), 811–819. https://doi.org/10.1093/OXFORDJOURNALS.AOB.A086751 872 

Fan, J., Zheng, J., Wu, L., & Zhang, F. (2021). Estimation of daily maize transpiration using support 873 

vector machines, extreme gradient boosting, artificial and deep neural networks models. Agricultural 874 

Water Management, 245, 106547. https://doi.org/10.1016/J.AGWAT.2020.106547 875 

Ferreira, L. B., da Cunha, F. F., de Oliveira, R. A., & Fernandes Filho, E. I. (2019). Estimation of 876 

reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – A new 877 

approach. Journal of Hydrology, 572, 556–570. https://doi.org/10.1016/J.JHYDROL.2019.03.028 878 

Fournier-Level, A., Korte, A., Cooper, M. D., Nordborg, M., Schmitt, J., & Wilczek, A. M. (2011). A Map 879 

of Local Adaptation in Arabidopsis thaliana. Science, 334(6052), 86–89. 880 

https://doi.org/10.1126/science.1209271 881 

Fukushima. (1969). Visual Feature Extraction by a Multilayered Network of Analog Threshold 882 

Elements. IEEE Transactions on Systems Science and Cybernetics, 5(4), 322–333. 883 

https://doi.org/10.1109/TSSC.1969.300225 884 

Fürnkranz, J. (2011). Decision Tree. Encyclopedia of Machine Learning, 263–267. 885 

https://doi.org/10.1007/978-0-387-30164-8_204 886 

Geller, G. N., & Smith, W. K. (1982). Influence of leaf size, orientation, and arrangement on 887 

temperature and transpiration in three high-elevation, large-leafed herbs. Oecologia, 53(2), 227–234. 888 

https://doi.org/10.1007/BF00545668/METRICS 889 

Gosa, S. C., Lupo, Y., & Moshelion, M. (2019). Quantitative and comparative analysis of whole-plant 890 

performance for functional physiological traits phenotyping: New tools to support pre-breeding and 891 

plant stress physiology studies. Plant Science, 282, 49–59. 892 

https://doi.org/10.1016/J.PLANTSCI.2018.05.008 893 

Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & 894 

McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 895 

1550–1566. https://doi.org/10.1111/NPH.16485;PAGE:STRING:ARTICLE/CHAPTER 896 

Grulke, N. E., & Retzlaff, W. A. (2001). Changes in physiological attributes of ponderosa pine from 897 

seedling to mature tree. Tree Physiology, 21(5), 275–286. 898 

https://doi.org/10.1093/TREEPHYS/21.5.275 899 

Haijun, L., Cohen, S., Lemcoff, J. H., Israeli, Y., & Tanny, J. (2015). Sap flow, canopy conductance and 900 

microclimate in a banana screenhouse. Agricultural and Forest Meteorology, 201, 165–175. 901 

https://doi.org/10.1016/j.agrformet.2014.11.009 902 

Halperin, O., Gebremedhin, A., Wallach, R., & Moshelion, M. (2017). High-throughput physiological 903 

phenotyping and screening system for the characterization of plant–environment interactions. Plant 904 

Journal, 89(4), 839–850. https://doi.org/10.1111/tpj.13425 905 

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., 906 

Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, 907 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 39 

A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. 908 

Nature 2020 585:7825, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2 909 

Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Pearson Education India. 910 

Ho, T. K. (1995). Random decision forests. Proceedings of the International Conference on Document 911 

Analysis and Recognition, ICDAR, 1, 278–282. https://doi.org/10.1109/ICDAR.1995.598994 912 

Imai, K., & Murata, Y. (1976). Effect of carbon dioxide concentration on growth and dry matter 913 

production of crop plants. Effects on leaf area, dry matter, tillering, dry matter distribution ratio and 914 

transpiration. . Japanese Journal of Crop Science, 45(4), 598–606. 915 

Iqbal, A., Fahad, S., Iqbal, M., Alamzeb, M., Ahmad, A., Anwar, S., Khan, A., Arif, M., Inamullah, S., 916 

Saeed, M., & Song, M. (2020). Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress 917 

Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. 918 

https://doi.org/10.1007/978-3-030-40277-8_4 919 

Juárez-López, F. J., Escudero, A., & Mediavilla, S. (2008). Ontogenetic changes in stomatal and 920 

biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf 921 

life span. Tree Physiology, 28(3), 367–374. https://doi.org/10.1093/TREEPHYS/28.3.367 922 

Kiraga, S., Peters, R. T., Molaei, B., Evett, S. R., & Marek, G. (2023). Reference Evapotranspiration 923 

Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman-924 

Monteith Equation in a Highly Advective Environment. https://doi.org/10.3390/w16010012 925 

Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition strategies 926 

change with soil age. Trends in Ecology and Evolution, 23(2), 95–103. 927 

https://doi.org/10.1016/J.TREE.2007.10.008/ASSET/CBF09F7C-765E-4123-ACAB-928 

F9E82000E550/MAIN.ASSETS/GR3.JPG 929 

Landeras, G., Ortiz-Barredo, A., & López, J. J. (2008). Comparison of artificial neural network models 930 

and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the 931 

Basque Country (Northern Spain). Agricultural Water Management, 95(5), 553–565. 932 

https://doi.org/10.1016/J.AGWAT.2007.12.011 933 

Lange, O. L., Lösch, R., Schulze, E. D., & Kappen, L. (1971). Responses of stomata to changes in 934 

humidity. Planta, 100(1), 76–86. https://doi.org/10.1007/BF00386887 935 

Lazar, T. (2003). Taiz, L. and Zeiger, E. Plant physiology. 3rd edn. Annals of Botany, 91(6), 750–751. 936 

https://doi.org/10.1093/AOB/MCG079 937 

Leibniz, G. W. F. von. (1920). The Early Mathematical Manuscripts of Leibniz (C. I. Gerhardt, Ed.). 938 

Courier Corporation. 939 

https://books.google.co.il/books?hl=en&lr=&id=tCmp_c3Q9S8C&oi=fnd&pg=PP1&dq=Leibniz,+Gottf940 

ried+Wilhelm+Freiherr+von+(1920).%C2%A0The+Early+Mathematical+Manuscripts+of+Leibniz:+Tran941 

slated+from+the+Latin+Texts+Published+by+Carl+Immanuel+Gerhardt+with+Critical+and+Historical+942 

Notes+(Leibniz+published+the+chain+rule+in+a+1676+memoir).+Open+court+publishing+Company.943 

%C2%A0ISBN%C2%A09780598818461.&ots=eD4SCW8omT&sig=dnpMq4OoEyLVJZDfHxQcw9oL_3U944 

&redir_esc=y#v=onepage&q&f=false 945 

Li, L., Chen, S., Yang, C., Meng, F., & Sigrimis, N. (2020). Prediction of plant transpiration from 946 

environmental parameters and relative leaf area index using the random forest regression algorithm. 947 

Journal of Cleaner Production, 261, 121136. https://doi.org/10.1016/J.JCLEPRO.2020.121136 948 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 40 

Liu, W., Zhang, B., & Han, S. (2020). Quantitative Analysis of the Impact of Meteorological Factors on 949 

Reference Evapotranspiration Changes in Beijing, 1958–2017. Water 2020, Vol. 12, Page 2263, 12(8), 950 

2263. https://doi.org/10.3390/W12082263 951 

Liu, X., Xu, C., Zhong, X., Li, Y., Yuan, X., & Cao, J. (2017). Comparison of 16 models for reference crop 952 

evapotranspiration against weighing lysimeter measurement. Agricultural Water Management, 184, 953 

145–155. https://doi.org/10.1016/J.AGWAT.2017.01.017 954 

López-Urrea, R., Martín de Santa Olalla, F., Fabeiro, C., & Moratalla, A. (2006). Testing 955 

evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water 956 

Management, 85(1–2), 15–26. https://doi.org/10.1016/J.AGWAT.2006.03.014 957 

Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model 958 

Predictions. https://github.com/slundberg/shap 959 

Madhu, M., & Hatfield, J. L. (2014). Interaction of carbon dioxide enrichment and soil moisture on 960 

photosynthesis, transpiration, and water use efficiency of soybean. Agricultural Sciences, 5(5), 410–961 

429. https://doi.org/10.4236/AS.2014.55043 962 

Mckinney, W. (2010). Data Structures for Statistical Computing in Python. 963 

Merrick, L., & Taly, A. (2020). The Explanation Game: Explaining Machine Learning Models Using 964 

Shapley Values. In A. Holzinger, peter Kieseberg, a min Tjoa, & E. weippl (Eds.), Machine Learning and 965 

Knowledge Extraction (pp. 17–38). https://doi.org/10.1007/978-3-030-57321-8_2 966 

Mingers, J. (1989). An empirical comparison of selection measures for decision-tree induction. 967 

Machine Learning 1989 3:4, 3(4), 319–342. https://doi.org/10.1007/BF00116837 968 

Molnar, C. (2022). Chapter 9 Local Model-Agnostic Methods | Interpretable Machine Learning. 969 

https://christophm.github.io/interpretable-ml-book/local-methods.html 970 

Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental 971 

Biology, 19, 205–234. 972 

Ohana-Levi, N., Munitz, S., Ben-Gal, A., Schwartz, A., Peeters, A., & Netzer, Y. (2020). Multiseasonal 973 

grapevine water consumption – Drivers and forecasting. Agricultural and Forest Meteorology, 280, 974 

107796. https://doi.org/10.1016/J.AGRFORMET.2019.107796 975 

Pagano, A., Amato, F., Ippolito, M., De Caro, D., Croce, D., Motisi, A., Provenzano, G., & Tinnirello, I. 976 

(2023). Machine learning models to predict daily actual evapotranspiration of citrus orchards under 977 

regulated deficit irrigation. Ecological Informatics, 76, 102133. 978 

https://doi.org/10.1016/J.ECOINF.2023.102133 979 

Pedregosa, F., Michel, V., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J., 980 

Cournapeau, D., Pedregosa, F., Varoquaux, G., Gramfort, A., Thirion, B., Grisel, O., Dubourg, V., 981 

Passos, A., Brucher, M., Perrot andÉdouardand, M., Duchesnay, andÉdouard, & Duchesnay, Fré. 982 

(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 983 

2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html 984 

Penman, H. Latimer. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of 985 

the Royal Society, Series A, 193(1032), 120–145. 986 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 41 

Pieruschka, R., Huber, G., & Berry, J. A. (2010). Control of transpiration by radiation. Proceedings of 987 

the National Academy of Sciences of the United States of America, 107(30), 13372–13377. 988 

https://doi.org/10.1073/pnas.0913177107 989 

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning - J. Ross Quinlan - Google Books. Morgan 990 

Kaufmann Publishers. 991 

https://books.google.co.il/books?hl=en&lr=&id=b3ujBQAAQBAJ&oi=fnd&pg=PP1&dq=Quinlan,+J.+R.992 

+(1993).%C2%A0C4.5:+Programs+for+machine+learning.+San+Mateo:+Morgan+Kaufmann.+&ots=sS993 

1tRPJmC6&sig=d1hJNAHV650dcwNzQbol63WLRno&redir_esc=y#v=onepage&q=Quinlan%2C%20J.%994 

20R.%20(1993).%C2%A0C4.5%3A%20Programs%20for%20machine%20learning.%20San%20Mateo%995 

3A%20Morgan%20Kaufmann.&f=false 996 

Rawson, H. M., Begg, J. E., & Woodward, R. G. (1977). The effect of atmospheric humidity on 997 

photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta, 998 

134(1), 5–10. https://doi.org/10.1007/BF00390086/METRICS 999 

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization 1000 

in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/H0042519 1001 

Shapley, L. S. (1953). 17. A Value for n-Person Games. In H. W. Kuhn & A. W. Tucker (Eds.), 1002 

Contributions to the Theory of Games (AM-28) (Vol. 2, pp. 307–318). Princeton University Press. 1003 

https://doi.org/10.1515/9781400881970-018 1004 

Shi, H., Luo, G., Hellwich, O., Xie, M., Zhang, C., Zhang, Y., Wang, Y., Yuan, X., Ma, X., Zhang, W., 1005 

Kurban, A., De Maeyer, P., & Van De Voorde, T. (2022). Evaluation of water flux predictive models 1006 

developed using eddy-covariance observations and machine learning: a meta-analysis. Hydrology 1007 

and Earth System Sciences, 26(18), 4603–4618. https://doi.org/10.5194/HESS-26-4603-2022 1008 

Song, Y., Jiao, W., Wang, J., & Wang, L. (2022). Increased Global Vegetation Productivity Despite 1009 

Rising Atmospheric Dryness Over the Last Two Decades. Earth’s Future, 10(7), e2021EF002634. 1010 

https://doi.org/10.1029/2021EF002634;WGROUP:STRING:PUBLICATION 1011 

Sperling, O., Yermiyahu, U., & Hochberg, · Uri. (2023). Linking almond trees’ transpiration to 1012 

irrigation’s mineral composition by physiological indices and machine learning. Irrigation Science, 41, 1013 

487–499. https://doi.org/10.1007/s00271-022-00803-0 1014 

Tanny, J. (2013). Microclimate and evapotranspiration of crops covered by agricultural screens: A 1015 

review. In Biosystems Engineering (Vol. 114, Issue 1, pp. 26–43). 1016 

https://doi.org/10.1016/j.biosystemseng.2012.10.008 1017 

The pandas development team. (2020). pandas-dev/pandas: Pandas. Zenodo. 1018 

https://doi.org/10.5281/ZENODO.10537285 1019 

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., 1020 

Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, 1021 

N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental 1022 

algorithms for scientific computing in Python. Nature Methods 2020 17:3, 17(3), 261–272. 1023 

https://doi.org/10.1038/s41592-019-0686-2 1024 

Xing, L., Cui, N., Liu, C., Zhao, L., Guo, L., Du, T., Zhan, C., Wu, Z., Wen, S., & Jiang, S. (2022). 1025 

Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning 1026 

models. Agricultural Water Management, 273, 107889. 1027 

https://doi.org/10.1016/J.AGWAT.2022.107889 1028 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 42 

Zhou, S., Zhang, Y., Williams, A. P., & Gentine, P. (2019). Projected increases in intensity, frequency, 1029 

and terrestrial carbon costs of compound drought and aridity events. Science Advances, 5(1). 1030 

https://doi.org/10.1126/SCIADV.AAU5740/SUPPL_FILE/AAU5740_SM.PDF 1031 

 1032 

  1033 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2024.11.24.625038doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.24.625038
http://creativecommons.org/licenses/by/4.0/


 

Transpiration Dynamics | 43 

Supporting Information  1034 

Supplementary Methods S1: Description of the systematic literature search and filtering procedure 1035 

for identifying machine learning studies focused on transpiration and evapotranspiration modeling. 1036 

Supplementary Table 1: Description of the training and holdout datasets used for model training and 1037 

evaluation. 1038 

Supplementary Figure 1: Correlation charts of the training and holdout datasets, showing the 1039 

Pearson correlation coefficients. 1040 

Supplementary Figure 2: Environmental conditions and experimental setup in the indoor growth 1041 

room used for external model validation. 1042 

Supplementary Figure 3: Distributions of environmental and physiological parameters by soil type 1043 

and crop type. 1044 

  1045 

Supplementary Figure 4: SHAP (SHapley Additive exPlanations) analysis showing the impact of 1046 
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Supplementary Figure 5: Box and whisker plots illustrating the distribution of transpiration in the 1048 
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