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Abstract: Symptoms of root stress are hard to detect using non-invasive tools. This study reveals
proof of concept for vegetation indices” ability, usually used to sense canopy status, to detect root
stress, and performance status. Pepper plants were grown under controlled greenhouse conditions
under different potassium and salinity treatments. The plants’ spectral reflectance was measured
on the last day of the experiment when more than half of the plants were already naturally infected
by root disease. Vegetation indices were calculated for testing the capability to distinguish between
healthy and root-damaged plants using spectral measurements. While no visible symptoms were
observed in the leaves, the vegetation indices and red-edge position showed clear differences between
the healthy and the root-infected plants. These results were achieved after a growth period of 32 days,
indicating the ability to monitor root damage at an early growing stage using leaf spectral reflectance.

Keywords: reflectance; root rot; transpiration; red-edge

1. Introduction

Plants may be damaged by biotic stress such as fungi, bacteria, viruses, or nematodes,
or abiotic stress such as drought, salinity, extreme temperature, or physical damage [1]. Both
biotic and abiotic stress in plants may damage different tissues and organs of the plant. The
primary role of roots is to absorb water and minerals to support the shoot demands. Any
limitation of the root capabilities will reduce shoot productivity and eventually yield [2].
Moreover, prolong biotic or abiotic root rot disease reduces plant health and may eventually
kill the plant [3,4]. Healthy roots are generally white and firm, while decayed roots may be
darker, smaller, and contain mucus. Root rot severity depends on abiotic factors such as soil
compaction, low oxygen level, unsuitable pH, irrigation patterns, and temperature [5,6].
Soilborne pathogens generally cause root rot disease induced by biotic factors, mainly
fungi, spread through infected irrigation equipment and may infect different organs [7,8].

Remote sensing and imaging spectroscopy can monitor vegetation status from the leaf
scale through the canopy to the field scale. It has advanced our ability to understand and
optimize agricultural processes by estimating growth variables that change throughout
the season, such as pigment concentration, leaf area index, or yield. The most direct mea-
surement is a contact measurement using a spectrometer that measures the light emitted
from a synthetic light source and reflected from the leaf. These measured spectra can later
be compared with spectra collected from afar, which typically contain artifacts from sun
illumination, atmospheric effects, and viewing angles [9,10]. One key factor in analyzing
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vegetation is the red-edge in the reflectance domain. The red-edge is the transition between
the strong absorbance in the red region by Chlorophyll (Chl) pigment and the relatively
high reflectivity in the NIR region attributed to the scattering effect caused by the internal
leaf structure [11,12]. The red-edge position (REP) is defined as the wavelength at the in-
flection point of the reflectance spectrum across the red-edge domain (690 nm-740 nm) [12].
It is mainly affected by the leaf Chl content and internal leaf structure and is less sensitive
to canopy variability [13]. In healthy plants, the REP shifts to longer wavelengths with
the increase in Chl. Accordingly, REP is used to monitor plant growth stages and stress
status of the plant, as it also shifts to longer wavelengths as leaves mature until the onset of
senescence, when a reverse trend may be observed [11]. REP was also shown to be affected
by plant diseases [14], heavy metals [11], water stress [15,16], and nutrient deficiency [17].
In the past few years, the REP was a key factor in monitoring forest canopies, creating
land cover maps, crops yield estimations, and foliar pests infection [9,18-22]. As the exact
REP position is crucial, it is best extracted when a high spectral resolution sensor is used,
allowing for the detection of small changes.

Vegetation analysis by remote sensing data is also carried out using vegetation indices
based on selected bands and wavelengths [23]. Vegetation indices are typically calculated
from two or three bands, either narrowband or broadband [23,24]. The most cited index
is the normalized difference vegetation index (NDVI), enhancing the signal of green
vegetation and tracking seasonal changes driven by plant growth and decline. Many
other vegetation indices are established, each developed to tackle different remote sensing
obstacles and utilize different parts of the spectrum. Vegetation is also monitored using
point and imaging spectroscopy sensors, where the high spectral resolution is exploited to
estimate chemical composition and physiological processes using spectral tools ([25-27]).

There are many reports on REP and VI use in vegetation monitoring; however, infor-
mation on spectral changes caused by root damage are very few [28-30] and are typical
of wilted or dead samples. The current manuscript presents whole-plant physiological
measurements under controlled conditions of pepper plants and their leaf spectral mea-
surements. Some plants suffered from unexpected root rot disease. Accordingly, this study
analyzes and reports the spectral changes associated with the damage to those specific
infected plants.

2. Materials and Methods

Four-week-old seedlings of 72 pepper plants (Capsicum annum) were transplanted to
pots and grown in a greenhouse [31] during April 2019, at the Hebrew University, at the
Faculty of Agriculture in Rehovot, Israel. A fertigation experiment was designed to test
potassium’s effect on plant performance using continuous physiological measurements,
with the added effect of salinity, known to reduce yield. The 72 plants were divided into
eight plants per group. Each group was given different treatments from the combination
of three potassium levels (low, control, high) and three levels of salinity (water, medium,
and high). Potassium levels of 30 PPM, 105 PPM, and 180 PPM were administered to the
low, control (optimal), and high treatments, respectively. The salinity treatments were
H,O, 0.03 M NaC(l, and 0.05 M NaCl. The pots” weight was logged every three minutes
by computerized weighing lysimeters, using PlantArray 3.0 (www.plantditech.com). The
system was used to calculate the daily plant weight and daily transpiration [32]. The plant
weight was calculated by reducing the pot and growing medium weight from the final
weight. The pots were covered with a custom cap that only allowed the shoot stem through
it, which enabled us to determine the daily transpiration. The irrigation was only applied
at night. Thus, the daily transpiration was calculated as the weight difference between the
early morning weight and the evening weight; no irrigation was applied during that time.
PlantArray 3.0 was also used for logging daily photosynthetic active radiation (PAR) and
vapor pressure deficit (VPD).

Although the growing period of pepper may be six to eight months, the fertilization
experiment enabled capturing a full physiological response profile in a few weeks, thus
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it was terminated after 32 days. Then, the plants’ stems were cut above the first node
and photographed. Each plant’s roots were washed in fresh water to remove the growing
medium residues (quartz sand). The roots were found to have ranging degrees of root
rot disease, as seen in Figure 1. Judging the roots by their color (light to dark), size, and
mucosity, they were categorized into six levels of root damage, from r0 (no damage) to r5
(severe damage) by an expert agronomist. Very few samples were classified as r1-r3 (n = 5);
many were severely infected (r4-r5, n = 19), and the majority of plants were classified as
not infected (n = 38). Several plants (n = 10) did not transplant well and were removed
from the analysis. Figure 1 presents an example of each category and summarizes the strict
root rot category from 10 to r5. The roots were dried in an oven at 65 °C for 48 h. After the
roots were dry, the weight of each root was measured.

R1 (n=1) R2 (n=2) R3 (n=2) R4 (n=11) RS (n=8)

Figure 1. Representative image of fresh shoots and roots from six levels of root rot disease. Leftmost pair: healthy root (r0).

Rightmost: most damaged root (r5). The number of plants per group is depicted on the top row. Images were taken on the

last day of the experiment (32 days after transplanting to the pots).

Spectroscopic Measurements and Spectral Processing

At the end of the experiment, the three youngest fully grown leaves were selected
from each plant. Before the roots were cut, the leaves were cut and immediately measured
by an ASD FieldSpec-Pro and a contact probe [10]. The leaves were gently pressed (without
compression) between a black surface and the contact probe’s lens. Each leaf was mea-
sured in three different spots, resulting in nine spectral measurements per plant that were
averaged to represent one representative spectral reflectance per plant [33,34]. Reflectance
was calculated by calibrating the spectrometer against a white reference panel (Spectralon,
Labsphere inc.) every five plants.

To check which spectral bands present significant differences in the reflectance values
between the groups, an analysis of variance (ANOVA) was calculated [35]. The Kruskal-
Wallis test was used (x = 0.05) when the ANOVA assumptions were not met (normality
and homogeneity of variance). The mean plant reflectance spectrum was converted to
the first derivative spectrum for locating the red-edge position, and the local maximum
between 680 and 720 nm was registered for each plant.

The spectra were resampled to common bandwidths of the public domain Sentinel 2
bands using a Gaussian spectral response function (Table 1). Among other things, Sentinel
2 bands were carefully selected to monitor vegetation, and a multispectral sensor may be
more straightforward and sufficient for low altitude imaging of plants infected with root
rot. The resampling process enabled to check whether multispectral sensors may observe
these differences among the plants’ spectra, in addition to the very high spectral resolution
recorded by the spectrometer. The significance of differences in reflectance between the
groups was tested again using the resampled bands. In addition, six established vegetation
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indices were calculated (Table 2) and tested for their ability to separate the plants by their
root damage level using ANOVA followed by the Tukey honestly significant difference
post hoc test (« = 0.05).

Table 1. The band centers used for resampling the ASD resolution.

Sentinel 2 Band Index Center Wavelength (nm) Bandwidth (nm)
Ultra-blue B1 442.7 432.2-453.2
Blue B2 4924 459.4-525.4
Green B3 559.8 541.8-577.8
Red B4 664.6 649.1-680.1
Rel B5 704.1 696.6-711.6
Re2 B6 740.5 733-748
Re3 B7 782.8 772.8-792.8
Nir B8 832.8 779.8-885.8
Nir_n B9 864.7 854.2-875.2
SWIR1 1613.7 1567.2-1659.2
SWIR2 2202.4 2114.9-2289.9

Table 2. The vegetation indices used in this study as calculated based on simulated Sentinel 2
bands configuration.

Vegetation Index Abbreviation Formula References
Normalized
differen.cedvegetation NDVI % Tucker (1979) [36]
index

Green normalized Gitelson et al. (1996)

: : pB9—pB3
dlfferen.ce vegetation GNDVI pB9+pB3 [37]
index
Red-edge normalized 0B6—pB5 Gitelson et al. (1994)
vegetation index RENDVI pB6+pB5 [38]
Modified chlorophyll (pB5 —pB4) — Daughtry et al. (2000)
absorption in MCARI 0B5 [39]
reflectance 0.2(pB5 — pB3) (pﬂ)
Visible i
Atmospherically VARI i) ég’fgﬁ%z) Gltelson[ig]a 1. (2002)
Resistant Index pEoTRERTE
Sentinel 2 red-edge SOREP 705 + 35((((B7 + B4)/2) — Frampton et al. 2013
position B5)/(B6 — B5)) [41]

3. Results and Discussion

All the treatments, except for one (the combination of low potassium levels and high
salinity), were found to have both healthy and diseased plants (Figure 2, Table 3). The
absence of diseased plants in this treatment is attributed to a chance occurrence, as both
low potassium and high salinity in other treatments were infected.
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Figure 2. The number of plants per treatment that were healthy or diseased.
Table 3. Plant treatments.
ID Treatment
1A Low potassium + H,O
1B Medium potassium + H,O
1C High potassium + H,O
2A Low potassium + medium salinity
2B Medium potassium + medium salinity
2C High potassium + medium salinity
3A Low potassium + high salinity
3B Medium potassium + high salinity
3C High potassium + high salinity

Grouping the plants’ weight based on their disease level revealed that the high severity
of the root damage (r4,r5) significantly affected the final plant’s weight since it inhibited
their ability to grow in size by reducing their water uptake from the growing medium
(Figure 3A). The differences in plant mean weight and the roots dry weight (Figure 3B)
indicate that the disease had started during the early stages of the experiment. If the condi-
tion was less advanced, its effects would likely be less severe and would not significantly
differ between the groups. This inhibition is also observed in Figure 4, which depicts
the plants” daily transpiration by damage levels and daily PAR and VPD changes. The
infected plants had a significantly lower final weight, and their daily transpiration was also
lower from day 14 until the end of the experiment. The small sample size of non-severe
root damage (r1-r3) indicates that these plants were probably damaged late during the
experiment instead of r4-r5 plants. Figure 4 shows how healthy and infected plants” daily
transpiration responded to changes in the ambient conditions, that is, on days 13 and 30, as
the PAR and VPD were low in the greenhouse.

Comparing the mean spectra of the infected and healthy plant groups shows a minor
spectral difference, both in the high resolution and the resampled lower resolution. How-
ever, these minor spectral differences are significant in the visible and red-edge portions of
the spectrum but not for any other bands (Figure 5). Although the damage affected the
roots, the spectra of groups r4-r5 show the highest reflectance in the green region, and
15 has the lowest reflectance from the NIR plateau (~750 nm) to the upper limit of the
ASD spectral region (2500 nm). The spectral differences between the different root damage
groups demonstrated by the high spectral resolution of the ASD spectrometer were not lost
when the spectra were resampled to a lower spectral resolution: the bands between 450
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and 750 nm were significantly different between the groups, but bands outside this region,
namely Bl and B7-B11, were not different. Moreover, the groups’ red-edge position shows
a significant decrease towards lower wavelengths by 5-6 nm from healthy to infected
plants (Figure 6). This is in agreement with previous findings by Milton et al. [42], where
stressed plants treated with high concentration arsenic or selenium treatments exhibited
similar spectra.

250 A 14 a B
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g £
@ 150 b T 8
s b 3 b b
2 100 £ b
= 9 4
o Q
a 50 e
2
0 0
r0 r4 rs r0 r4 rs
Disease level Disease level

Figure 3. Plants net weight (A) and root dry weight (B) on the last day of the experiment. Error bars represent standard
deviation. Significant differences (p < 0.05) are marked with different letters.
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Figure 4. Top: Photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) of the entire experiment. Bottom:
Daily transpiration by root damage level throughout the experiment. Healthy (r0) plants are significantly different from
damaged plants (r4,r5) from day 14 until the end of the experiment (p < 0.05). *r1,1r2,r3 do not have error bars since they
have less than three samples.
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Figure 5. A: Mean reflectance spectrum of healthy (r0) and severely diseased plants (r4,r5); B: Resampled spectra to Sentinel
2 bands. Significantly different band values (p < 0.05) between the groups are shaded by a red color.
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Figure 6. Left: Mean indices values and standard deviations for each root damage level. Right: Mean red-edge position
and standard deviations for each root damage level. Note: Different letters mark a significant difference between the

groups (p < 0.01).

All the calculated VIs could separate r0 from r4 or r5 groups, based on the mean index
value (Figure 6). In comparison, separating between r4 and r5 was not possible with any of
the calculated VI.

The most sensitive VI is MCARI, which has the highest slope between the r0 mean
value and r4. In addition, MCARI and VARI show a positive association with the increase
in damage level, as opposed to the other VIs that show a negative association.

Chl content in leaves is known to change from low to high content as leaves ma-
ture [12,25,43]. This variance in Chl content is linearly correlated with a shift in REP.
Differences in REP (up to 10 nm) were previously reported to be the results of different
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diseases such as yellow mosaic disease [14] and two-spotted spider mite damage [22].
Additionally, water stress was also reported to cause a shift in the REP in maize [15] and a
general decrease in the infrared channel in citrus trees affected by footrot [44]. While these
shifts are the results of plant shoot changes, the RE shift reported in this research was not
associated with any noticeable visual symptoms.

On the contrary, the REP was associated with the root damage. During the experiment,
daily visual inspection of the leaves did not detect any visual symptoms. Moreover, routine
inspection of the plants’ daily transpiration using the logged values hinted that several
of the plants have abnormal values. These abnormalities were verified at the end of
the experiment.

The REP of healthy and damaged plants was significantly different using the high
spectral resolution data, and VI could be similarly calculated from the resampled data to
express these differences. Nonetheless, the resampling to the lower spectral resolution
of Sentinel 2 proved that even a few bands are sufficient to detect abnormalities when a
naked eye cannot. Nevertheless, the REP in the resampled spectra that was estimated using
the Frampton et al. [41] method was several nanometers higher than the original high-
resolution spectra. Similarly, the sensitivity between r0 and r4 was lower in the resampled
spectra. Current multispectral technology is continually getting cheaper, and unmanned
aerial vehicles (UAV), amongst other remote sensing means from the air and orbit domain,
are exploited for precision farming and phenotyping practices. It is not unlikely that in the
near future, in addition to nutrient deficiencies being detected from leaves’ spectral signal,
root disease may also be detected in early growing stages, as demonstrated here. Using the
leaves spectral signature as an antenna to account for root zone conditions is not a new
idea. As Zhang et al. [45] demonstrated, soil salinity at the root zone can be inferred by
the canopy’s spectral response using high spectral resolution data. This study proposed a
method to detect the root status under several root zone conditions (nutrient and salinity
content) using the leaves spectral signals.

4. Conclusions

This study focused on the potential to identify root damage using high and multi-
spectral resolution during the early stages of a growing season. It was the first to bring
proof of concept and demonstrate early-stage spectral reflectance changes caused by root
malfunctioning. Although the leaves did not show any noticeable visible change during
the experiment, as an indication of the underground disease development, the measured
daily transpiration declined with disease development, and the final plant weight was
lower for damaged plants. Additionally, the red-edge shift agreed with these trends. The
VIs calculated were significantly different between the damaged plants and healthy ones
based on the spectrum alone and were supported by the bio-physiological measurements
(root dry weight, daily transpiration, and plant weight).

VIs are typically used to track plant growth and development by correlating the
indices with biophysical data such as pigment content. However, in a scenario where
everything seems normal and a spectral change is obtained, root disease may be discovered
early on and treated before significant damage to the plants and yield occurs.

Author Contributions: Conceptualization, M.M., RW. and E.B.-D.; Formal analysis, S.W.; Funding
acquisition, R.W.; Methodology, S.W., and N.H.; Supervision, O.R., and E.B.-D.; Writing—original
draft, S.W.; Writing—review and editing, O.R., M.M., RW,, and E.B.-D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Israel Chemical Ltd. (grant number 31010201), the Israel
Science Foundation (grant number 1780/18), and a startup grant from the Agricultural Research
Organization, Volcani Center, held by Offer Rozenstein.

Acknowledgments: The authors wish to thank the members of the Remote Sensing Laboratory at Tel
Aviv University for their support in different stages of the project, and the contribution of the Action



Remote Sens. 2021, 13, 980 90of 10

CA17134 SENSECO (Optical synergies for spatiotemporal sensing of scalable ecophysiological traits)
funded by COST (European Cooperation in Science and Technology, www.cost.eu).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. MacDonald, J.D. Temperature and Water Stress Effects on Sporangium Viability and Zoospore Discharge in Phytophthora
cryptogea and P. megasperma. Phytopathology 1978, 68, 1449. [CrossRef]

2. Sade, N.; Gebretsadik, M.; Seligmann, R.; Schwartz, A.; Wallach, R.; Moshelion, M. The role of tobacco Aquaporinl in improving
water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol. 2010, 152, 245-254. [CrossRef]

3. Robinson, ].B.D. Nutrient Deficiencies and Toxicities in Crop Plants. Exp. Agric. 1995, 31, 391. [CrossRef]

4. Lloyd, J. Plant Health Care for Woody Ornamentals: A Professional’s Guide to Preventing and Managing Environmental Stresses and
Pests; Cooperative Extension Service, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at
Urbana-Champaign: Urbana, IL, USA, 1997; ISBN 1883097177.

5. Al-Sohaibani, S.A.; Mahmoud, M.A.; Al-Othman, M.R.; Ragab, M.M.M.; Saber, M.M.; Abd El-Aziz, A.R.M. Influence of some
biotic and abiotic inducers on root rot disease incidence of sweet basil. Afr. ]. Microbiol. Res. 2011, 5, 3628-3639. [CrossRef]

6.  Kiihn, J,; Rippel, R.; Schmidhalter, U. Abiotic soil properties and the occurrence of Rhizoctonia crown and root rot in sugar beet. J.
Plant. Nutr. Soil Sci. 2009, 172, 661-668. [CrossRef]

7. Whipker, B.E.; Evans, M.R. Regulation of plant growth. In Greenhouse Operation and Management; Nelson, P.V., Ed.; Pearson
Prentice Hall: Upper Saddle River, NJ, USA, 2012; pp. 373-389.

8. Duniway, ].M. Movement of Zoospores of Phytophthora cryptogea in Soils of Various Textures and Matric Potentials. Phytopathol-
0gy 1976, 66, 877. [CrossRef]

9. le Maire, G.; Francois, C.; Soudani, K.; Berveiller, D.; Pontailler, J.Y.; Bréda, N.; Genet, H.; Davi, H.; Dufréne, E. Calibration and
validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area
index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846-3864. [CrossRef]

10. Bartholomeus, H.; Kooistra, L.; Stevens, A.; van Leeuwen, M.; van Wesemael, B.; Ben-Dor, E.; Tychon, B. Soil Organic Carbon
mapping of partially vegetated agricultural fields with imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 81-88.
[CrossRef]

11. Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. . Remote Sens. 1983, 4, 273-288. [CrossRef]

12.  Curran, PJ.; Windham, W.R.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll concentration
in slash pine leaves. Tree Physiol. 1995, 15, 203-206. [CrossRef]

13. Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in
nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135-146. [CrossRef]

14. Gazala, LES.; Sahoo, R.N.; Pandey, R.; Mandal, B.; Gupta, V.K,; Singh, R.; Sinha, P. Spectral reflectance pattern in soybean for
assessing yellow mosaic disease. Indian J. Virol. 2013, 24, 242-249. [CrossRef] [PubMed]

15.  Zhang, F; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water
indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 1-12. [CrossRef]

16. Ballester, C.; Brinkhoff, J.; Quayle, W.C.; Hornbuckle, ]. Monitoring the effects of water stress in cotton using the green red
vegetation index and red edge ratio. Remote Sens. 2019, 11. [CrossRef]

17.  Zhao, D.; Reddy, K.R.; Kakani, V.G.; Reddy, V.R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspec-
tral reflectance properties of sorghum. Eur. J. Agron. 2005, 22, 391-403. [CrossRef]

18.  Houborg, R.; Boegh, E. Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and
SPOT reflectance data. Remote Sens. Environ. 2008, 112, 186-202. [CrossRef]

19. El-Hendawy, S.; Al-Suhaibani, N.; Hassan, W.; Tahir, M.; Schmidhalter, U. Hyperspectral reflectance sensing to assess the growth
and photosynthetic properties of wheat cultivars exposed to different irrigation rates in an irrigated arid region. PLoS ONE 2017,
1-22. [CrossRef]

20. El-Hendawy, S.E.; Al-Suhaibani, N.A.; Hassan, W.M.; Dewir, Y.H. Evaluation of wavelengths and spectral re fl ectance indices
for high- throughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agric. Water
Manag. 2019, 212, 358-377. [CrossRef]

21. Gholizadeh, A.; Misurec, J.; Kopatkova, V.; Mielke, C.; Rogass, C. Assessment of red-edge position extraction techniques: A case
study for norway spruce forests using hymap and simulated sentinel-2 data. Forests 2016, 7. [CrossRef]

22. Herrmann, I; Berenstein, M.; Sade, A.; Karnieli, A.; Bonfil, D.]J.; Weintraub, P.G. Spectral monitoring of two-spotted spider mite
damage to pepper leaves. Remote Sens. Lett. 2012, 3, 277-283. [CrossRef]

23. Marshall, M.; Thenkabail, P.; Biggs, T.; Post, K. Hyperspectral narrowband and multispectral broadband indices for remote
sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agric. For. Meteorol. 2016, 218-219,
122-134. [CrossRef]

24. Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop
characteristics. Remote Sens. Environ. 2000, 71, 158-182. [CrossRef]

25. Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms

for non-destructive chlorophyll assessment in higher plant leaves. . Plant Physiol. 2003, 160, 271-282. [CrossRef]


www.cost.eu
http://doi.org/10.1094/Phyto-68-1449
http://doi.org/10.1104/pp.109.145854
http://doi.org/10.1017/S0014479700025710
http://doi.org/10.5897/AJMR11.208
http://doi.org/10.1002/jpln.200700186
http://doi.org/10.1094/Phyto-66-877
http://doi.org/10.1016/j.rse.2008.06.005
http://doi.org/10.1016/j.jag.2010.06.009
http://doi.org/10.1080/01431168308948546
http://doi.org/10.1093/treephys/15.3.203
http://doi.org/10.1016/0034-4257(94)90136-8
http://doi.org/10.1007/s13337-013-0161-0
http://www.ncbi.nlm.nih.gov/pubmed/24426282
http://doi.org/10.1186/s12898-019-0233-0
http://doi.org/10.3390/rs11070873
http://doi.org/10.1016/j.eja.2004.06.005
http://doi.org/10.1016/j.rse.2007.04.012
http://doi.org/10.1371/journal.pone.0183262
http://doi.org/10.1016/j.agwat.2018.09.009
http://doi.org/10.3390/f7100226
http://doi.org/10.1080/01431161.2011.576709
http://doi.org/10.1016/j.agrformet.2015.12.025
http://doi.org/10.1016/S0034-4257(99)00067-X
http://doi.org/10.1078/0176-1617-00887

Remote Sens. 2021, 13, 980 10 of 10

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

Pacumbaba, R.O.; Beyl, C.A. Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient
deficiencies. Adv. Sp. Res. 2011, 48, 32—42. [CrossRef]

Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, ].C. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using
Hyperspectral Imaging. Front. Plant Sci. 2017, 8, 1-12. [CrossRef]

Leckie, D.G.; Jay, C.; Gougeon, F.A.; Sturrock, R.N.; Paradine, D. Detection and assessment of trees with Phellinus weirii
(laminated root rot) using high resolution multi-spectral imagery. Int. . Remote Sens. 2004, 25, 793-818. [CrossRef]

Reynolds, G.J.; Windels, C.E.; MacRae, 1.V.; Laguette, S. Remote sensing for assessing rhizoctonia crown and root rot severity in
sugar beet. Plant Dis. 2012, 96, 497-505. [CrossRef]

Yang, C.; Everitt, ].H.; Fernandez, C.]. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root
rot. Biosyst. Eng. 2010, 107, 131-139. [CrossRef]

Weksler, S.; Rozenstein, O.; Haish, N.; Moshelion, M.; Walach, R.; Ben-Dor, E. A hyperspectral-physiological phenomics system:
Measuring diurnal transpiration rates and diurnal reflectance. Remote Sens. 2020, 12, 1493. [CrossRef]

Halperin, O.; Gebremedhin, A.; Wallach, R.; Moshelion, M. High-throughput physiological phenotyping and screening system
for the characterization of plant—Environment interactions. Plant J. 2017, 89, 839-850. [CrossRef]

Mahajan, G.R.; Sahoo, R.N.; Pandey, R.N.; Gupta, V.K.; Kumar, D. Using hyperspectral remote sensing techniques to monitor
nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499-522. [CrossRef]
Serbin, S.P; Dillaway, D.N.; Kruger, E.L.; Townsend, P.A. Leaf optical properties reflect variation in photosynthetic metabolism
and its sensitivity to temperature. J. Exp. Bot. 2012, 63, 489-502. [CrossRef]

Ullah, S.; Schlerf, M.; Skidmore, A.K.; Hecker, C. Identifying plant species using mid-wave infrared (2.5-6 um) and thermal
infrared (8-14 um) emissivity spectra. Remote Sens. Environ. 2012, 118, 95-102. [CrossRef]

Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127-150.
[CrossRef]

Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS- MODIS.
Remote Sens. Environ. 1996, 58, 289-298. [CrossRef]

Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn
chestnut and maple leaves. . Photochem. Photobiol. B Biol. 1994, 22, 247-252. [CrossRef]

Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E. Estimating corn leaf chlorophyll concentration
from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229-239. [CrossRef]

Gitelsona, A.A.; Kaufmanb, Y.J.; Starkc, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote
Sens. Environ. 2002, 80, 76-87. [CrossRef]

Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of
biophysical variables in vegetation. ISPRS ]. Photogramm. Remote Sens. 2013, 82, 83-92. [CrossRef]

Milton, N.M.; Ager, C.M.; Eiswerth, B.A.; Power, M.S. Arsenic- and selenium-induced changes in spectral reflectance and
morphology of soybean plants. Remote Sens. Environ. 1989, 30, 263-269. [CrossRef]

Curran, PJ. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271-278. [CrossRef]

Fletcher, R.S.; Skaria, M.; Escobar, D.E.; Everitt, ]. H. Field spectra and airborne digital imagery for detecting phytophthora foot
rot infections in citrus trees. HortScience 2001, 36, 94-97. [CrossRef]

Zhang, T.T.; Zeng, S.L.; Gao, Y.; Ouyang, Z.T; Li, B.; Fang, C.M.; Zhao, B. Using hyperspectral vegetation indices as a proxy to
monitor soil salinity. Ecol. Indic. 2011, 11, 1552-1562. [CrossRef]


http://doi.org/10.1016/j.asr.2011.02.020
http://doi.org/10.3389/fpls.2017.01348
http://doi.org/10.1080/0143116031000139926
http://doi.org/10.1094/PDIS-11-10-0831
http://doi.org/10.1016/j.biosystemseng.2010.07.011
http://doi.org/10.3390/rs12091493
http://doi.org/10.1111/tpj.13425
http://doi.org/10.1007/s11119-014-9348-7
http://doi.org/10.1093/jxb/err294
http://doi.org/10.1016/j.rse.2011.11.008
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1016/S0034-4257(96)00072-7
http://doi.org/10.1016/1011-1344(93)06963-4
http://doi.org/10.1016/S0034-4257(00)00113-9
http://doi.org/10.1016/S0034-4257(01)00289-9
http://doi.org/10.1016/j.isprsjprs.2013.04.007
http://doi.org/10.1016/0034-4257(89)90068-0
http://doi.org/10.1016/0034-4257(89)90069-2
http://doi.org/10.21273/HORTSCI.36.1.94
http://doi.org/10.1016/j.ecolind.2011.03.025

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

