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A B S T R A C T 

Phenomics is a new branch of science that provides high-throughput quantification of plant and animal traits at systems level. The last 

decade has witnessed great successes in high-throughput phenotyping of numerous morphological traits, yet major challenges still exist in 

precise phenotyping of physiological traits such as transpiration and photosynthesis. Due to the highly dynamic nature of physiological traits 

in responses to the environment, appropriate selection criteria and efficient screening systems at the physiological level for abiotic stress 

tolerance have been largely absent in plants. In this review, the current status of phenomics techniques was briefly summarized in horticultural 

plants. Specifically, the emerging field of high-throughput physiology-based phenotyping, which is referred to as “physiolomics”, for drought 

stress responses was highlighted. In addition to analyzing the advantages of physiology-based phenotyping over morphology-based approaches, 

recent examples that applied high-throughput physiological phenotyping to model and non-model horticultural plants were revisited and 

discussed. Based on the collective findings, we propose that high-throughput, non-destructive, and automatic physiological assays can and 

should be used as routine methods for phenotyping stress response traits in horticultural plants. 
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1. Introduction 

Over the past few decades, considerable progress has been
made in “omics” technologies ( Urano et al., 2010 ; Li, 2013 ). Since
the whole genome sequence of Arabidopsis thaliana was assem-
bled ( Initiative, 2000 ), genomics has led the way in technical
“omics” advancements along with other related technologies,
such as transcriptomics and epigenomics. Moreover, the appli-
cation of high-resolution mass spectrometry technology has
fostered the development of proteomics and metabolomics
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( Aebersold and Mann, 2003 ; Wang and Bodovitz, 2010 ). While
these technologies have been valuable in uncovering the molec-
ular mechanisms of plant development and interactions with
the environment, a fundamental understanding of plant biology
requires high-quality, multi-faceted phenotypic data. Despite
the emergence of the “phenome” in the 1990s ( Schork, 1997 ;
Siebner et al., 2009 ), which refers to a comprehensive set of
phenotypes in a living organism, the utilization of phenomics
in plant science has lagged behind the genomics technology
until several key supportive technologies/tools became available
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 Bilder et al., 2009 ; Houle et al., 2010 ), including high-throughput 
maging, high-precision sensor, automatic control, and infor- 

ation processing systems, as well as data decoding software 
 Mahner and Kary, 1997 ; Varki et al., 1998 ; Gerlai, 2002 ; Schilling
t al., 2010 ). Subsequently, phenomics has been widely applied 

o analyze phenotyping plants and animals at the cellular,
rgan, individual, and population levels, providing abundant,
omprehensive, and reproducible data ( Finkel, 2009 ). 

Due to the weaknesses of traditional phenotyping meth- 
ds such as low-throughput, labor cost and strong subjectivity 
 Furbank, 2009 ), so they are becoming less powerful in meeting 
he need of comprehensive analysis of the phenome-genome- 
nvironment relationships. Phenomics is a powerful approach 

hat quantitatively measures plant morphological, biochemical,
nd physiological characteristics under genotype-environment 
nteractions. Equipped with large-scale, non-destructive, and au- 
omated phenotyping facilities, plant phenomics systems pro- 
ide dynamic and comprehensive phenotypic data for traits of in- 
erest ( Finkel, 2009 ). These data are key for biological research and 

rait-based plant breeding or pre-breeding ( Furbank and Tester,
011 ). Generally, current phenomics platforms, according to their 
argeted traits, are divided into 2 categories, morphology-based 

nd physiology-based phenomics platforms. The former acquires 
orphological parameters, such as plant height, stem diameter,

eaf area, leaf angle, stem length, and plant spacing. The latter ac- 
uires physiological indexes, including chlorophyll fluorescence,
ranspiration rate, leaf water content, root influx and efflux, and 

tomata conductance. Irrespective of morphological and physio- 
ogical traits, phenomics requires that these traits be monitored 

imultaneously in multiple plants in order to obtain homoge- 
eous data for comparison ( Close, 2011 ). After obtaining these 
orphological and physiological data, the information can be in- 

egrated with genome-wide DNA genotypic data for the identifi- 
ation of genetic determinates of specific traits via genetic link- 
ge mapping (for pedigree populations, such as F 2 , BC 1 F 1 , and 

ecombinant inbred lines) or association mapping (for natural 
opulations). Phenomics applications have moved beyond staple 
ood crops (e.g., rice, wheat, and maize) to more economic plants,
ncluding horticultural plants (e.g., tomato, beans, and cucumber) 
 Xu et al., 2015 ; Halperin et al., 2017 ; Hui et al., 2018 ; Zhou et al.,
020 ). 

In this paper, the current status of phenomics techniques 
n horticultural plants was briefly reviewed. The emerging field 

f high-throughput physiology-based phenotyping is highlighted 

nd the term “physiolomics” was coined to specifically refer 
o the “omics” of physiology. By showcasing its applications in 

odel horticulture plants tomato and non-model horticulture 
lants yardlong bean (vegetable cowpea) and pepper, we appeal 
hat high-throughput, non-destructive, and automatic physiolog- 
cal assays can and should be used as routine technological meth- 
ds for stress response traits phenotyping in horticultural plants.

. Morphology-based stress responses phenotyping 

Morphological changes are relatively easy to detect and 

onitor. Traditional stress response phenotyping, either by 
anual measurements or using imaging tools, relies more 

pon morphological indicators to quantify stress responses.
ue to the advancement of optical imaging and remote sensing 
echnologies, morphological phenotypes of several plants can 

e measured automatically, simultaneously, and continuously 
 Parent et al., 2015 ). Current high-throughput scanning systems 
se dozens to hundreds of sensors to measure a variety of mor- 
hological traits, such as plant height, canopy size, leaf area, leaf 
reenness, branch angle, disease spot size, and plant wilt degree.
y combining these data, one can comprehensively characterize 

mportant traits, such as plant architecture, nutritional status,
rought tolerance, and disease resistance. 

To date, these technologies have been applied to many horti- 
ultural plants. Hurtado et al. (2013) evaluated fruit shape traits 
n 21 eggplant accessions from 4 varieties using the Tomato An- 
lyzer image tool. A total of 23 fruit shape parameters were eval- 
ated for each accession, including fruit shape index, blocki- 
ess, homogeneity, proximal fruit end shape, asymmetry, inter- 
al eccentricity, and slenderness. Hui et al. (2018) obtained the 
hree-dimensional (3D) canopy of cucumber, pepper, and egg- 
lant based on multi-view stereo (MVS) around the plant canopy.
sing this approach, the parameters of leaf length, leaf width,

eaf area, plant height, and maximum canopy width were ex- 
racted and calculated which demonstrated that the dynamic 
apture of highly accurate 3D canopy structures was a poten- 
ial approach for assisted breeding and field management prac- 
ices. Jaradat (2018) identified phenotypic data for agronomic 
nd stress response traits using the Crop Circle ACS-470 multi- 
pectral crop canopy sensor platform, including low-temperature 
olerance during germination, early seedling growth, flowering,
nd maturity, and biomass under field conditions. These param- 
ters were used to select high-yield Brassica napus varieties suit- 
ble for short-term growth in the Midwestern United States. Us- 
ng the Scanalyzer 3D large-scale imaging platform, Laxman et al.
2018) digitally quantified tomato biomass and detected signifi- 
ant linear relationships between the projected shoot area (PSA),
lant fresh mass, and plant digital biomass. Moreover, Bernotas 
t al. (2019) argued that a 3D morphological phenotyping system 

ased on photometer stereoscopic (PS) imaging would be invalu- 
ble for phenotyping circadian rhythms in eudicot species, such 

s tomato, cabbage, and oilseed rape, by tracking the rhythmic 
ovements of cotyledons at the seedling stage. 

. Physiology-based stress response phenotyping 

Despite being powerful and widely use, morphology-based 

henomics assays still have many limitations. One drawback 
s the slow expression of morphological traits, usually over the 
ourse of days to weeks after treatment. Additionally, due to the 
omplexity of plant architecture and field conditions, mechanical 
orphological phenotyping can be inaccurate or even erroneous 

 Poorter et al., 2016 ; Fernandez et al., 2017 ; Fischer and Rebet- 
ke, 2018 ). Physiology-based phenotyping provides more sensi- 
ive measurements of plant phenotypes, making it a better fit for 
lant-environment interaction analysis ( Earl, 2003 ; Pereyra-Irujo 
t al., 2012 ; Halperin et al., 2017 ). 

Among the many environmental cues, water stress due to soil 
rought is a global threat to agriculture. Under current climate 
eterioration trends, crop yield loss because of drought stress 
ill become more frequent. Plant drought responses can be 
easured by morphological traits, such as the leaf yellowing 

ndex and wilting degree. However, from an agronomic per- 
pective, drought tolerance should always be assessed based 
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on minimum yield losses compared with non-stressed controls,
which is closely related to plant growth recovery after the
removal or alleviation of stress ( Hatfield and Walthall, 2015 ).
Drought tolerance is a complex quantitative trait with many
determinants and low inheritability. It is difficult to perform
phenotypic analysis using morphological measurements and
should be conventionally evaluated at the final stage of a plant’s
lifecycle by calculating yield loss ( Negin and Moshelion, 2017 ).
Previous studies uncovered linear relationships between the
quantities of intercepted solar radiation, water, CO 2 , and dry
matter production in crops ( Dewar, 1996 ; Sinclair and Muchow,
1999 ; Hall, 2001 ), which provided a means for physiologically
predicting crop yield loss. However, one challenge of physiology-
based stress phenotyping in field conditions is the degree of
stress, which is closely related to dynamic soil-atmosphere
conditions ( Asfaw et al., 2012 ). Accordingly, the parameters used
for quantifying drought tolerance are also dynamic. 

Recently, there has been a breakthrough in the technolo-
gies used for physiology-based stress phenotyping. For exam-
ple, a variety of detecting platforms and statistical methods used
to obtain physiological trait data continuously and in a high-
throughput manner ( Ghanem et al., 2015 ). Weighing lysimeters
are widely used for tracking changes in plant weight, which al-
lows for the monitoring of plant water-loss rates and water use
efficiency (WUE), as well as the simulation of drought stress ( Earl,
2003 ; Pereyra-Irujo et al., 2012 ; Vera-Repullo et al., 2015 ). Similarly,
a non-destructive, automated, high-throughput system (PlantAr-
ray) was developed for water and biostimulant responses pheno-
typing based on physiological traits ( Halperin et al., 2017 ; Dalal et
al., 2019 ). Theoretically, the system is extendible to other types of
abiotic stress, including salt, low or high temperature, and heavy
metals. This platform monitors many physiological traits, includ-
ing photosynthesis and transpiration rates, which are key factors
of maintaining crop yield under stress conditions. These physio-
logical traits are referred to as “functional traits” or “quantitative
physiological traits” (QPTs) ( Violle et al., 2007 ). Accordingly, the
high-throughput physiolomics platform allows for the functional
physiological phenotyping (FPP) of plants. Through the simul-
taneous monitoring of the environment (soil-atmosphere) and
QPTs of hundreds of plants, the stress responses among several
germplasm lines can be compared ( Wallach et al., 2010 ; Yin and
Struik, 2016 ). By comparing the dynamic performance of each
plant with respect to the whole population, plants that perform
well under a specific stress scenario can be easily selected. More-
over, the underlying physiological mechanisms of genotypic dif-
ferences on the stress responses of plants can also be uncovered.
Due to the higher sensitivity of physiological responses than mor-
phological changes to the environment, FPP can more effectively
detect subtle or transient stress responses ( Negin and Moshelion,
2017 ). Exemplary studies that employed the physiolomics plat-
form for FPP in horticultural plants were discussed below. 

4. Applications of physiolomics assays in 

horticultural plants 

4.1. Applications in the model horticulture plant tomato 

With a relatively small genome, short growth cycle, and well-
established transgenic systems, the tomato is a fleshy model
horticulture plant. The study of functional genomics and phe-
nomics in tomato has become a hotspot of horticulture research.
Halperin et al. (2017) and Nir et al. (2017) used the physiolomics
system to record the profiles of physiological responses in an ar-
ray of plants under normal, water-stressed, and recovery con-
ditions in a real-time manner ( Fig. 1 , A). The system allowed
for the simultaneous and continuous monitoring of whole-plant
transpiration, biomass gain, stomatal conductance, and root flux
with specifically designed algorithms. Compared with the con-
ventional gas-exchange tools, this physiological assay possesses
major advantages in measuring several plants at a higher tem-
poral resolution, as well as the comparative examination and
graded ranking of different physiological characteristics, includ-
ing growth rate, WUE, mid-day transpiration level ( E ), canopy
stomatal conductance ( G sc ), and the drought-resistance index
(DRI). Based on these QPT data, plant resilience can be easily as-
sessed, and the genotypes exhibiting the fastest and most thor-
ough recovery upon re-watering after drought stress can be se-
lected. Thus, this physiological system links plant functional ge-
nomics and modern breeding technology. 

4.2. Applications in the non-model horticultural plants cowpea 

and pepper 

Each plant species or cultivar uses its own pathway to bal-
ance its water status, which has important implications on plant
growth behaviors and yield penalty under stress conditions. Ac-
cording to the physiological characteristics of whole-plant water
relations, plants can be divided into the isohydric and anisohy-
dric types ( Tardieu and Simonneau, 1998 ). Isohydric plants (e.g.,
cactus) prioritize water conservation when faced with drought
stress by quickly closing their stomata to prevent water loss,
which consequently retards growth. In contrast, anisohydric
plants (e.g., sunflower) maintain relatively high stomatal con-
ductance ( G S ) and CO 2 assimilation rates ( A N 

) under drought
stress, specifically under light to moderate drought conditions,
in order to gain biomass ( Tardieu and Simonneau, 1998 ; Aharon
et al., 2003 ; Uehlein et al., 2003 ). Originating from the arid re-
gion of West Africa, cowpea exhibited excellent drought toler-
ance and broad intra-species variation in this trait ( Ehlers and
Hall, 1997 ; Muchero et al., 2008 ). Previous studies revealed 2 differ-
ent types of drought-tolerant responses in cowpea, types I and II
( Watanabe et al., 1997 ; Muchero et al., 2008 ; Agbicodo et al., 2009 ),
which corresponded to isohydric/anisohydric behaviors, respec-
tively, rendering cowpea as a promising new model system for
studying water relations, including isohydric/anisohydric water
adjustment mechanisms. 

Using a similar platform, Xu et al. (2015) optimized the growth
conditions and experimental procedures for the physiological
stress response assays of yardlong bean (vegetable cowpea),
which included ambient temperate ranges, lights, water supply
modes, physiological parameters, and curation ( Fig. 1 , B). The sta-
bility and reliability of the platform were verified through the
continuous monitoring of 4 plant varieties B118, B128, B253 and
B47 for 15 d Genotypic differences in water regulation strategies
among the 4 varieties were well-demonstrated. The results re-
vealed significant differences in WUE, the maximum transpira-
tion ( E max ), daily transpiration, and growth inhibition degree un-
der drought stress among the 4 varieties ( Fig. 2 , A and B). The
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Fig. 1 High-throughput physiological assay systems for stress-response phenotyping 
A. Lysimetric system used for tomato plants (photograph from Halperin et al., 2017 ). B. Lysimetric system used for yardlong bean 

plants (photograph from Xu et al., 2015 ). C. An updated lysimetric system that compensated for temperature and light in Huai’an, 
Jiangsu Province, China (photograph captured in October 2019). 

s
a
t  

e
w
p
s
d
d
t
w
n
(
w
c
v  

d
w
t
a
s

e
f
t
S
w
c
a
w
t
t
r

t
b
d
d
d
i
u

5

o
f
i
p
a
s
q
(  

s
o
l
r  

t
a
g
d
m
w
p
t
t
i

emi-dwarf variety, B47, exhibited a slow growth rate and moder- 
te WUE with a less drastic loss of growth potential in response 
o drought treatment, while an indeterminate-type variety, B128,
xhibited the fastest growth rate and the highest WUE under 
ell-watered conditions, as well as the greatest loss of growth 

otential under drought treatment. These two materials are con- 
idered to behave the characteristics of isohydric and anisohy- 
ric types to some degree, respectively. Moreover, by aligning the 
ynamic soil water content ( θ ) data with the transpiration rate 
rajectories, the authors were able to calculate the critical soil 
ater content ( θcr ), which is the key secondary parameter de- 
oting when a plant starts to close its stomata, for each variety 
 Fig. 2 , A). Moreover, the whole-plant daily transpiration and 

hole plant weight among genotypes were compared over the 
ourse of pre-treatment, stress, and recovery phases with 4 plant 
arieties G034, G047, G356 and TZ30 for 27 d ( Fig. 2 , C and D). Un-
er drought stress condition, the growth inhibition degree of G047 
as significantly higher than TZ30 ( Fig. 2 , C and D). These quanti- 

ative water budgeting parameters are valuable for the breeding 
nd molecular dissection of water regulation behaviors in this 
pecies. 

In addition to drought, Dalal et al. (2019) investigated the 
ffects of different biostimulants on pepper plants under dif- 
erent irrigation regimes using a similar system with minor 
echnical modifications. The effects of 2 biostimulants, ICL- 
W and ICL-NewFo1, on plant daily transpiration, volumetric 
ater content (VWC), biomass, and WUE were quantified and 

ompared using the system; fruit number under well-irrigated 

nd drought stress scenarios was also measured. Compared 

ith the control, biostimulant application improved the overall 
ranspiration and biomass, which was considered as an alterna- 
ive approach to increase crop productivity. Additionally, 2 new 

esilience-quantifying-related traits were proposed, transpira- 
ion recovery rate and night water reabsorption, which can also 
e used for phenotype identification by the system. This study 
emonstrated that physiology-based phenotyping due to its 
ynamic, accurate, and high-resolution nature can effectively 
etect small or short-term physiological changes, rendering 

t valuable for predicting yield fluctuations under favorable or 
nfavorable conditions. 

. Future prospective 

Both morphology- and physiology-based phenotyping meth- 
ds are rapidly deployed in horticulture plant research. For the 
ormer, there is a need to develop cost-effective and adaptable 
nfrastructure in the near future to analyze multi-dimensional 
henotypes. More sophisticated and automated workflows are 
lso required to implement proper checkpoints at different 
tages of the phenotyping process to reduce the risk of data 
uality deterioration and the omission of interesting phenotypes 
 Rahaman et al., 2015 ; Araus et al., 2018 ). Given the fast and
ensitive responses of plants to the environment at the physi- 
logical level when compared with the morphological level, the 

atter (physiology-based parameters) is directly and promptly 
elate to the regulation of DNA, RNA, and proteins. Therefore,
here is a potential for physiolomics to enable the systematic 
nalysis of phenotypic data with other “omics” data, such as 
enomics, transcriptomics, metabolomics, and epigenomics 
ata, to better relate plant stress responses to their environ- 
ents. Genome-wide association studies (GWAS) have also been 

idely used to identify specific genome regions controlling key 
hysiological traits that confer to stress tolerance. A challenge in 

he near future is the efficient dissection of genetic components 
hat control dynamic physiological changes over time, given the 
ncreasingly massive amount of phenotypic data. New statistical 
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Fig. 2 An optimized physiological system and the experimental results for QPT measurements in yardlong bean, a non-model 
vegetable legume 

A. Noon-day transpirations of 4 Chinese yardlong bean varieties (B118, B128, B253 and B47) plotted against soil water contents. For 
each variety, the critical soil water content ( θcr ) when a plant started to close its stomata was clearly observed and indicated as the 

turning point. E max is the daily maximum transpiration rate normalized to plant weight ( Xu et al., 2015 ). B. Plant water use efficiency 
(WUE) in the 4 varieties was calculated as the ratio between plant weight gain and the amount of water that was transpired. The 

WUE of each variety was determined by fitting a linear curve of the cumulative plant weight gain during the pretreatment stage vs. 
cumulative water transpiration ( Xu et al., 2015 ). C. Whole-plant daily transpiration of another 4 Chinese yardlong bean varieties 

(G034, G047, G356 and TZ30) throughout the experimental period (27 d, unpublished data). D. Whole-plant weight throughout the 
experimental period (27 d, unpublished data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

framework, such as “functional mapping,” which is a general
statistical mapping framework used to characterize quantitative
trait loci (QTLs) of a complex dynamic trait in a single step,
could be valuable in overcoming this challenge and ultimately
enable the interpretation of big data acquired from physiolomics
facilities ( Wu and Lin, 2006 ; Li and Sillanpää, 2013 ). 

With the rapid increase of physiological system applications
in horticulture plant research, further technical advancements
are expected to be achieved in the following areas: first, more
convenient and user-friendly operation systems should be de-
veloped for plant physiologists, geneticists, and breeders alike, of
whom the latter two usually lack professional plant physiology
knowledge; second, more complex, secondary physiological
parameters should be calculated from many primary parameters
that are measurable by the system. This category could include
the relative water content (RWC) of leaves ( Anjum et al., 2011 ;
Kalariya et al., 2015 ; Tanentzap et al., 2015 ), as well as leaf ( �leaf )
and root water ( �root ) potentials. Acquiring a more compre-
hensive set of parameters will deepen our understanding of
the whole-plant water budgeting process of plants in response
to changing environmental conditions. For example, due to
dynamic soil-atmosphere parameters, which are measured
along with plant physiological traits in physiological assays,
transpiration rates and other key stress responses in different
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lant varieties can be compared based on soil moisture contents 
ather than the duration of stress treatment used in traditional 

ethods. Such advancements will provide more physiolog- 
cally meaningful insights into the genotypic differences in 

orticultural plants. 
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