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A B S T R A C T   

Drought stress, exacerbated by climate change, presents a critical global challenge characterized by increasingly 
severe and prolonged dehydration events. This phenomenon poses significant obstacles to both agricultural 
productivity and ecological stability. One promising strategy for addressing this issue involves functional phe
notyping, a methodology that provides invaluable insights into the intricate responses of plants to water scarcity. 
A profound understanding of these responses is crucial for the advancement of drought-tolerant crop cultivars/ 
species, the optimization of irrigation methodologies, and the implementation of effective water resource 
management practices in agriculture. This review underscores the potential of developing an ideal phenotyping 
tool that continuously monitors a plant’s physiological profile in response to shifting environmental parameters. 
Such an approach enables the multifaceted characterization and assessment of various functional phenotypes and 
productivity levels. Through the application of functional phenotyping techniques, we stand to gain invaluable 
insights into plant behaviour, thereby contributing to the development of drought-tolerant crops and the 
establishment of sustainable agricultural systems.   

1. Introduction 

Drought, a prevalent and damaging environmental constraint, poses 
a significant threat to plant growth and crop productivity. The antici
pated global temperature rise, coupled with the growing demand for 
water to sustain the increasing world population, further exacerbates the 
depletion of soil water reserves. Ensuring adequate crop yields in the 
face of escalating drought conditions has become an urgent priority 
[1–4]. The plant’s response to drought stress is influenced by factors 
such as stress duration, severity, genotype, and developmental stage. 
Nonetheless, it is evident that drought stress primarily hampers cell 
division and expansion rates, leading to reduced leaf size, shorter stems, 
and diminished root systems. Moreover, nutrient uptake is compromised 
in drying soils due to alterations in the physiochemical composition and 
flow of xylem sap [1,2]. The impact of climate change on temperature 
and precipitation patterns is altering the water balance of ecosystems, 
resulting in prolonged drought periods in temperate regions, among 
other extreme weather events. Without effective measures, these coun
tries may face severe water shortages that would impact both water and 
food security [1,3,4]. 

Initially, the development of drought-tolerant plants relied on 

conventional breeding techniques, which involved crossing promising 
genotypes and utilizing the natural genetic variation available. With 
advancements in genetics, new methods were devised to overcome the 
limitations of traditional breeding, including the ability to precisely edit 
genes at the single-base level [3,5]. Regardless of the specific techniques 
employed, it is essential to phenotype the modified plants. According to 
the classical equation "phenotype = genotype × environment," a mu
tation in a single gene can have diverse effects on the plant’s phenotype 
[6,7]. Drought, manifested in diverse patterns such as intermittent or 
continuous periods of water scarcity, represents an opportunity to 
induce, investigate, and comprehend the adaptive phenotypic and, 
physiological mechanisms employed by plants [7,8]. 

The practical application of functional trait analysis to develop 
improved crop lines remains limited, with only a handful of instances 
reported. This constraint primarily arises from technical challenges in 
phenotyping functional traits at a population scale, which currently lags 
behind advancements in breeding techniques [9–11]. Consequently, 
there is an immediate need to intensify efforts in plant phenomics, 
directing a greater focus towards the phenotyping of functional traits. 
This emphasis is crucial to promptly address the existing 
genotype-to-phenotype knowledge gap in future breeding programs. 
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Due to limitations in phenotyping techniques, noninvasive and 
high-throughput analyses of underlying functional traits significantly 
lag behind the observation of morphological features, which are more 
readily captured by imaging systems [12–15]. Consequently, there is a 
pressing need for tools to discern fundamental functional traits. Crop/
plant models present promising solutions for identifying robust func
tional traits across diverse environments for breeding purposes [10]. 
These models enable the deconstruction of complex phenotypes into 
probable sets of mechanisms, facilitating the identification of key 
functional traits for crop improvement. Additionally, they offer an 
alternative approach to quantifying the potential benefits of trait 
modification in targeted scenarios [16,17]. Negin et al. (2017) intro
duced the concept of functional phenotyping, a novel approach that 
characterizes plant functions across multiple scales. This methodology 
addresses crucial knowledge deficits bridging genomic information with 
external phenotypes for intricate traits. 

The pioneering work on ’functional phenotyping’ by Negin et al., 
2017 in their paper published in ’Functional Plant Biology.’ They were 
the first to articulate the concept of functional phenotyping for crop 
selection, emphasizing the necessity for a practical approach to agro
nomically characterize plant responses to the environment, particularly 

under stress conditions, distinct from traditional phenotyping methods. 
Furthermore, they delineated various crucial aspects unique to func
tional phenotyping, specifically for drought tolerance in pre-field 
screening. These essential components encompass: (i) identifying 
optimal conditions for phenotyping, specifying the environmental set
tings for experiments; (ii) defining relevant and effectively measurable 
traits for phenotyping; (iii) choosing appropriate methods for pheno
typing; and (iv) translating acquired data into actionable knowledge for 
informed decision-making in practical field applications [13]. Prior to 
composing this review, the Connected Papers tool was employed to 
identify articles related to functional phenotyping and drought stress. A 
visual representation, in the form of a graph, was generated where ar
ticles sharing similarities were proximally positioned, with connecting 
lines denoting their relationships. This graph illustrates publications 
both cited and published within the field of functional phenotyping and 
drought stress. The size of each node in the graph corresponds to the 
number of citations received by the respective article, while the shade of 
color of the nodes indicates the publication year of each article (Fig. 1). 
The important element of this review revolves around the application of 
functional phenotyping platforms for monitoring plant conditions under 
drought stress. Through the utilization of these platforms, we can 

Fig. 1. The graph shows articles published and cited in field of functional phenotyping and drought stress. The size of each node in the graph indicated the number of 
citations an article has received, while the shade of color of the nodes represented the publication year of the article. 
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acquire a holistic comprehension of the adaptive mechanisms employed 
by plants. Moreover, employing various functional phenotyping ap
proaches facilitates the creation of dependable predictive models for 
evaluating the drought tolerance of plants. 

2. Plant drought stress and phenotyping 

Plants exhibit diverse physiological, morphological, and biochemical 
traits as adaptive mechanisms in response to drought stress. These 
mechanisms allow them to cope with limited water availability and 
sustain their essential functions. Several studies have elucidated the 
different response and adaptive strategies employed by plants to combat 
abiotic water deficit stress. These strategies include, stomatal closure, 
drought escape and dehydration tolerance [18,19]. Drought stress 
triggers a range of physiological responses in plants, including stomatal 
closure to reduce water loss through transpiration, leading to decreased 
carbon dioxide uptake and photosynthesis. Additionally, drought stress 
often induces osmotic stress, resulting in cellular dehydration and 
altered ion balance [20–25]. Plants respond to drought stress at the 
molecular and biochemical levels by activating various stress-responsive 
genes and pathways. These include the synthesis of osmoprotectants 
such as proline and soluble sugars to maintain cellular turgor and pro
tect cellular structures from damage [26–29]. Drought stress inhibits 
plant growth and development by affecting processes such as cell 
elongation, cell division, and flowering. Reduced water availability 
hampers nutrient uptake and transport, leading to stunted growth and 
delayed or aborted reproductive development [24,29,30]. Plants have 
evolved various mechanisms to adapt to drought stress, including 
morphological adaptations such as deep root systems to access 
groundwater, as well as biochemical and physiological adaptations to 
enhance water use efficiency and osmotic adjustment (Fig. 2) [7,27,29, 
31]. Functional phenotyping under drought stress involves evaluating 
plant traits and physiological processes to comprehend how plants cope 

with water scarcity. It quantifies performance-related traits like growth, 
development, and productivity under diverse environmental conditions, 
including drought. Various techniques such as imaging, spectroscopy, 
and physiological measurements aid in characterizing plant responses to 
drought stress across different scales, from molecular to whole-plant 
levels [16,32,33]. Studying plant water relations have traditionally 
relied on physiological parameters such as leaf gas exchange, canopy 
temperature, and spectral reflectance to assess water use efficiency. 
However, traditional methods, limited to specific leaf sections and 
time-consuming measurements, may not capture the overall plant 
response. In contrast, remote sensing techniques, such as infrared im
aging, provide a rapid, straightforward, and cost-effective means to 
evaluate physiological traits in plants, offering a more comprehensive 
assessment of water-related characteristics [34–36]. In the process of 
phenotyping, we should prioritize key criteria (outlined in Table 1) to 
guide the planning and execution of functional phenotyping experi
ments. This entails selecting suitable experimental conditions, speci
fying the target trait, and opting for the most relevant phenotyping 
methods. These steps are essential for obtaining dependable and sig
nificant phenotypic data, facilitating subsequent analysis and informed 
decision-making. 

Plant phenotyping is a rapidly advancing and wide-ranging area of 
research within the field of plant sciences. It involves the study of 
various characteristics of plants, and it is often carried out using 
specialized platforms that enable the simultaneous analysis of multiple 
plant features [37]. Phenotyping platforms are tools and systems 
designed to automate the process of measuring and analyzing the plant 
traits on a large scale. They typically combine various technologies, such 
as imaging, robotics, and sensors, to collect data on plant growth, 
physiology, and response to environmental factors [13,37]. These plat
forms are designed to rapidly screen large numbers of plants. They often 
use conveyor systems to move plants through imaging stations, where 
various sensors and cameras capture data on plant traits such as growth, 

Fig. 2. The figure depicts plant adaptations to drought stress. It includes a representation of a plant thriving under optimal conditions with lush foliage, vigorous 
growth, and abundant flowering and fruiting. Additionally, it illustrates a drought-stressed plant with closed stomata to reduce transpiration and water loss. Osmotic 
adjustment is portrayed through the accumulation of compatible solutes like proline and soluble sugars to maintain cellular turgor. Root morphological adaptations, 
such as deeper root systems, enable access to groundwater reserves. Biochemical adaptations involve the activation of stress-responsive genes for osmoprotection and 
antioxidant defense. Water use efficiency enhancement mechanisms optimize water uptake, transport, and utilization in response to drought stress. 
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leaf area, biomass, and chlorophyll content. Whereas, Imaging-based 
platforms rely on advanced imaging technologies, such as RGB (red, 
green, blue) and hyperspectral cameras to capture detailed information 
about plant traits [37–39]. 

Functional phenotyping permits the real-time monitoring of critical 
plant physiological processes, encompassing photosynthesis, stomatal 
conductance, water use efficiency, nutrient uptake, and hormonal 
signaling (as illustrated in Fig. 3). This real-time monitoring affords us 
for valuable insights into the temporal dynamics of stress adaptation, 
yielding a more comprehensive comprehension of how plants respond 
and adapt to challenging abiotic stress conditions. [13,40]. Various 
phenotyping platforms have been developed to investigate plant re
sponses to abiotic stress [33,41]. In the case of drought stress, functional 
phenotyping allows for the precise characterization of stress levels based 
on parameters like ’theta crit’ and facilitates quantitative understanding 
of plant responses. However, when utilizing pot-based functional phe
notyping platforms, it is essential to exercise caution to avoid potential 
experimental artifacts that may arise from the pot effect. By taking 
necessary precautions, such artifacts can be eliminated, ensuring highly 
accurate results comparable to those obtained from studies conducted in 
gas-exchange chambers [13,42]. 

Mobile phenotyping platforms are designed for field-based studies. 
They often include robotic systems mounted on vehicles or drones, 
allowing for non-destructive and large-scale data collection across 
different locations and crop varieties. Controlled Environment Platforms 
provide tightly controlled growth conditions, such as temperature, hu
midity, light intensity, and CO2 levels. These are frequently employed in 
controlled growth chambers or greenhouses and can scale up to large- 
scale field-based platforms to investigate plant responses to particular 
environmental conditions or stressors [35,43,44]. Platforms such as 
weighing lysimeters and gravimetric arrays provide non-destructive and 
non-invasive methods for continuously monitoring plant water re
lations. These systems can effectively capture dynamic environmental 
conditions like radiation, temperature, relative humidity, and vapor 

pressure deficit. Their advancements enable precise and comprehensive 
characterization of plant responses to water-related factors. Another 
sophisticated system, the Plantarray by Plant-DiTech, is renowned for 
creating specific drought scenarios and measuring various functional 
traits such as whole-plant transpiration and stomatal conductance. 
Additional platforms like the automated Drought Simulator Phenotyp
ing Platform, HTP-telemetric phenotypic screening platforms, and Bio
ristor are also recognized for their capabilities in assessing plant 
responses to drought stress [12,40,41,43,45–52]. 

3. Direct and indirect functional phenotypic measurements 

Functional phenotyping serves as a tool to directly evaluate plant 
physiological responses under varying environmental conditions. This 
encompasses direct measurements like transpiration rates, photosyn
thetic efficiency, stomatal conductance, growth rate assessments, 
nutrient uptake assays, and water-use efficiency (WUE) parameters [32, 
53]. Conversely, indirect functional phenotyping involves methods that 
deduce plant physiological status through indirect means, such as 
thermal imaging of the plant. These indirect techniques often employ 
optical methods to gather insights about the plant’s health and its 
response to environmental changes. Examples include root architecture 
analysis, leaf morphology assessments, chlorophyll content estimation, 
and remote sensing imagery [16,54,55]. The latter method indirectly 
evaluates plant functional traits like canopy structure, biomass accu
mulation, or photosynthetic activity using satellite or drone-based 
remote sensing technologies. Analysis of remote sensing data enables 
the derivation of indices such as NDVI (Normalized Difference Vegeta
tion Index) or PRI (Photochemical Reflectance Index) to infer the plant’s 
functional status [16,40,54]. 

3.1. Remote-sensing techniques 

Remote sensing techniques, such as multispectral imaging, thermal 

Table 1 
Important criteria to effectively plan and execute for functional phenotyping experiments.  

Component Problem Solution Importance 

Optimizing 
Phenotyping: 
Selecting Ideal 
Experimental 
Conditions  

• It is difficult to define desired traits accurately 
with available different and inconsistent 
terminologies of desired traits.  

• It is hard to align treatment conditions with 
the expected environmental conditions in 
which the crop will grow.  

• Clear definitions of agronomic crop tolerance 
should be formulated, considering the specific 
plant and goals of the study.  

• Multiple conditions should be assessed in 
cases where desired growth conditions are 
uncertain  

• To determine the appropriate conditions 
(Where and When) to search for the desired 
trait. 

Target Trait Definition 
for Phenotyping  

• Conducting field trials in a high-throughput 
manner is challenging and costly. Field trials 
are considered the most reliable method for 
evaluating drought tolerance in crops, as they 
directly measure important traits.  

• Selecting plants that only perform well under 
stress conditions and testing more candidates 
with fewer field trials.  

• Screening candidates can be performed using 
high-throughput methods and avoid selecting 
plants that only perform well under stressful 
conditions.  

• High-throughput measurements of plant 
behavior can be taken continuously which 
helps in screening for suitable traits.  

• Capturing dynamic drought-tolerance traits 
through high-throughput techniques 

Best method selection  • Improving drought tolerance in crops is a 
major challenge in breeding programs 
because it requires phenotyping of enormous 
number of plants.  

• Field experiments are difficult, so many 
screenings are done under controlled 
conditions, which may not reflect real field 
conditions.  

• Technological advancements, such as remote- 
sensing methods like imaging and spectros
copy, have been used to overcome phenotyp
ing bottlenecks. These methods measure 
various plant traits without causing damage, 
allowing multiple measurements throughout 
the growing season.  

• A multi-tier system has been proposed, where 
traits are screened using high-throughput 
systems to eliminate unsuitable plants rather 
than directly selecting the best performers.  

• Pre-field screening for desired phenotypes 
can reduce the number of unsuitable plants 
and improve the chances of finding beneficial 
traits in field conditions. It is important to 
consider advanced technologies can capture 
measurement while keeping sensitivity and 
frequency of valuable data. 

From Data to Decision: 
Practical Knowledge 
Extraction  

• Although raw data can simply be converted 
into useful information, translating this 
information into meaningful knowledge that 
can help us understand how plants behave in 
different environments and select promising 
candidates for field trials is a challenge.  

• Automated systems in future may provide a 
comprehensive set of a plant’s physiological 
data.  

• Hypothetical models can be created to 
interpret this data in a way that allows us to 
understand how plants respond to specific 
conditions.  

• Conversion of massive amounts of data into 
meaningful knowledge helps us understand 
how each plant responds to stress in its own 
unique way, based on its characteristics and 
physiological state.  
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sensing, light detection and ranging (LiDAR), and vegetation indices, 
play a crucial role in monitoring crop growth, detecting stress, opti
mizing resource management, and aiding decision-making in agricul
ture by measuring different important phenotypic traits (Fig. 4) 
[56–59]. 

Multispectral imaging captures crop images in narrow spectral 
bands, providing valuable information on vegetation indices like 
normalized difference vegetation index (NDVI), indicating plant health, 
biomass, and growth stage. Thermal sensing measures crop thermal 
radiation, aiding in assessing water stress, detecting irrigation issues, 
and estimating water requirements [60–62]. LiDAR utilizes laser pulses 

to generate detailed 3D crop structure data, facilitating the study of crop 
height, canopy density, and biomass estimation [56,63]. Vegetation 
indices derived from remote sensing data, including NDVI, enhanced 
vegetation index (EVI), and soil-adjusted vegetation index (SAVI) offer 
quantitative measures of vegetation vigor and health [58,64]. These 
techniques empower us to make informed decisions on irrigation, 
fertilization, and disease control, ultimately enhancing crop productiv
ity and sustainable agricultural practices. 

Hyperspectral imaging is an advanced remote sensing technique that 
combines imaging and spectroscopy to capture and analyze the spectral 
signature of an object or scene across a wide range of wavelengths. 

Fig. 3. Functional phenotyping is a comprehensive approach to assess plant responses to drought stress and improve drought resilience. It involves measuring 
various morphological, physiological, and biochemical traits in plants affected by drought. These traits include osmotic adjustment and stomatal closure, which help 
plants conserve water. Functional phenotyping allows us to identify specific traits and mechanisms associated with drought tolerance, aiding breeding efforts to 
develop more drought-tolerant crop varieties. 
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Unlike traditional imaging methods that provide visual information 
only, hyperspectral imaging offers detailed spectral information for each 
pixel in an image [43]. This capability allows for the detection and 
characterization of subtle variations in plant responses to abiotic stress. 
Proximal hyperspectral sensing, in particular, involves capturing images 

with comprehensive spectral information for each pixel, covering a 
broad range of wavelengths. By utilizing proximal hyperspectral 
sensing, we can examine various plant processes in detail [65]. These 
include factors like leaf pigments, nutrient content, water status, 
photosynthetic activity, and stress responses. The high spatial resolution 

Fig. 4. The figure illustrates the use of advanced imaging technologies in imaging-based platforms to capture detailed information about plant traits.  
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of this technique enables precise characterization of individual plant 
components such as leaves, stems, and fruits [34,66]. 

3.1.1. Hyperspectral imaging in drought Stress monitoring 
Hyperspectral imaging has proven valuable in detecting drought 

stress in various crops by analyzing the spectral reflectance patterns 
associated with changes in leaf water content, stomatal conductance, 
and photosynthetic efficiency. Several notable studies have employed 
hyperspectral indices such as the normalized difference vegetation index 
(NDVI), water index (WI), and leaf water index (LWI) to evaluate 
drought stress in crops like wheat [67,68] and maize [69]. Detecting 
water stress at an early stage is crucial to prevent crop losses, as water 
stress can reach an irreversible state before visible symptoms appear 
[61]. Hyperspectral imaging, with its continuous spectral data, offers 
the potential to gain a deeper understanding of plant responses to water 
stress. 

The use of hyperspectral technology was investigated for classifying 
soybean genotypes under varying water availability conditions 
throughout different stages of plant development. They found that the 
first three principal components, primarily in the shortwave infrared 
(SWIR) wavelengths, accounted for 94% of the spectral variance among 
soybean genotypes [70]. By employing a stepwise process, they identi
fied up to 138 spectral bands that could effectively discriminate between 
soybean genotypes based on their response to water availability. Such 
information can contribute to understanding the mechanisms underly
ing plant responses to water stress and aid in the development of 
drought-tolerant crop varieties [70]. In another study, the application of 
hyperspectral data was investigated for early drought detection and 
assessment of leaf photosynthetic properties in citrus trees grown under 
greenhouse conditions. [71]. A study focusing on early-stage metabo
lism-driven responses to drought, even before visible signs of stress are 
noticeable in plants was conducted by burnett et al. They examined the 
physiology, biochemistry, and spectral responses of six different plant 
species grown under drought conditions in a greenhouse. They devel
oped Partial Least Squares (PLS) models to predict metabolite content, 
achieving validation R2 values ranging from 0.49 to 0.87. To differen
tiate between watered plants and those affected by drought, the study 
employed Linear Discriminant Analysis (LDA) and PLS-Discriminant 
Analysis (PLS-DA) based on spectral characteristics and traits [72]. 

3.1.2. Chlorophyll fluorescence imaging 
Chlorophyll fluorescence measurements have proven to be effective 

in detecting the physiological effects induced by a wide range of 
stressors [73]. By assessing the response of the photosynthetic machin
ery to these stressors, chlorophyll fluorescence measurements provide 
valuable insights into the overall health and performance of plants 
under challenging environmental conditions [74]. Unlike conventional 
analysis methods, chlorophyll fluorescence imaging allows for the cap
ture and analysis of photosynthetic operation and regulation across the 
entire leaf surface. This imaging approach has introduced new oppor
tunities for investigating the dynamic physiological processes of 
photosynthesis that cannot be discerned through traditional chlorophyll 
fluorescence analysis methods have contributed to the advancement and 
application of chlorophyll fluorescence imaging in plant research 
[75–77]. A cutting-edge robotic field scanning phenotyping platform 
was developed by Newcomb and Shakoor, 2022, specifically designed 
for conducting genetic studies on photosynthetic traits. This platform is 
equipped with a high-throughput chlorophyll fluorescence imaging 
system, allowing for efficient data collection in field trials. One of the 
key features of this platform is its ability to capture and analyze chlo
rophyll fluorescence in dark-adapted plants. By measuring the variable 
to maximum fluorescence ratio (Fv/Fm), they can assess the health and 
performance of plants’ photosynthetic systems. The automated chloro
phyll fluorescence imaging system integrated into the robotic field 
scanner enables rapid and non-destructive data collection. It captures 
fluorescence images of plants within field plots, providing a 

comprehensive view of the photosynthetic activity across the entire trial 
area [78]. 

3.1.3. Thermal Imaging 
There has been a growing integration of thermal imaging with other 

imaging techniques. According to evaluations by Roitsch and Spersch
neider, thermal infrared (TIR) cameras have been integrated with sen
sors like RGB, multi-, or hyperspectral cameras in phenotyping 
platforms. In order to develop reliable approaches for early diagnosis in 
agricultural fields, scientists can discover geographical and temporal 
trends by integrating TIR data with other pertinent vegetative indices 
(VIs). [79,80]. To identify a stress-specific signature, it is essential to do 
a preliminary examination of a particular plant-stressor interaction. 
Understanding these signs is crucial for appropriate interpretation since 
each plant stressor may have unique thermal properties. Complemen
tary imaging methods together yield complicated and useful informa
tion [57]. 

Proximal sensing cameras can be mounted on static stands, small to 
medium-sized robots, or high-throughput platforms. The spatial and 
temporal resolution varies based on the sensor used and the revisiting 
frequency of satellites over a specific region. [81,82]. Thermal infrared 
(TIR) imaging is used to closely monitor drought stress, which can 
seriously harm crops. TIR imaging is essential to assisting farmers create 
accurate water management and scheduling plans. While most study on 
the effects of drought stress has been done in crop fields, several studies 
have additionally been conducted on plants cultivated under controlled 
(lab) conditions [81,83]. 

Thermography is not only useful for evaluating physiological vari
ables related to plant water status but also for assessing production 
parameters. Several studies have demonstrated the correlation between 
thermal stress indices and grain yield in cereals like spring barley, 
maize, and wheat under various water conditions [57,84,85]. This 
suggests that thermography can be a valuable tool for predicting grain 
yield in these crops. The Crop Water Stress Index (CWSI) has proven to 
be a reliable predictor of garlic bulb biomass under different water 
availability levels. By assessing canopy temperature, thermography 
provides valuable insights into the water stress levels experienced by 
garlic plants, which directly impact bulb development and biomass 
accumulation [86]. 

3.1.4. Satellite imaging 
An emerging trend in high-throughput phenotyping (HTP) is the 

integration of satellite imagery for monitoring agricultural plots and 
trials. Satellite imaging payloads have been utilized since the 1970 s to 
collect landscape-level information on crop growth, biochemical status, 
and phenology, offering high temporal resolution [87]. Comparisons 
between satellite and unmanned aerial vehicle (UAV) imagery have 
shown strong correlations in crops like wheat and field beans. However, 
in cases where satellite resolutions do not provide the desired level of 
detail for small plot trials, several techniques can be employed to 
enhance spatial resolution and improve the usability of lower-resolution 
data. These techniques include sub-pixel mapping, pan-sharpening, and 
the application of machine learning (ML) algorithms [88,89]. 

Satellite imagery, despite its limitations in capturing critical devel
opmental stages due to factors like coverage frequency and cloud cover, 
can complement other high-throughput phenotyping (HTP) strategies 
such as UAV or ground-based measurements, providing adjustments 
with high temporal consistency. Comparisons between satellite and UAV 
imagery have shown strong correlations in crops like wheat and field 
beans, indicating their complementary nature[89,90]. To address the 
limitations of satellite resolutions for small plot trials, various tech
niques can be employed to enhance spatial resolution. Sub-pixel map
ping using super-resolution models, traditional pan-sharpening 
methods, and the application of machine learning algorithms have been 
explored to improve the usability of lower-resolution data sources [88, 
91]. While phenotyping offers numerous benefits, it also comes with 
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certain challenges that are outlined in the Table 2 for discussion. 

4. Recent advancements and platforms in functional 
phenotyping 

In recent times, several high-throughput phenotyping platforms have 
emerged to address the difficulties associated with accurately pheno
typing quantitative physiological traits (QPTs). These platforms, such as 
weighing lysimeters and gravimetric arrays, offer non-destructive and 
non-invasive systems for simultaneous and continuous monitoring of 
plant water relations. They can effectively capture dynamic environ
mental conditions, including radiation, temperature, relative humidity, 
and vapor pressure deficit. These advancements allow for more precise 
and comprehensive characterization of plant responses to water-related 
factors. [45,50]. The progress in phenotyping technologies, along with 
functional mapping methods, opens up new opportunities to compre
hend the genetic foundations of plant responses to drought and identify 
crucial QPTs associated with drought tolerance. Through unraveling the 
underlying genetic mechanisms, we can devise improved breeding 
strategies to enhance drought tolerance in crop plants, ultimately 
bolstering global food security [92,93]. The impact of a specific quan
titative physiological trait (QPT) on crop yield can vary depending on 
the severity and duration of drought conditions. For instance, low sto
matal conductance is advantageous during severe drought as it reduces 
water loss, but it can be detrimental under mild drought by limiting 
photosynthesis. The phenotypic plasticity of QPTs in plants plays a 
crucial role in their adaptability to different environments, making it an 
important breeding trait for food security. However, accurately pheno
typing yield-related QPTs presents challenges due to their dynamic na
ture. To overcome these challenges, a robust phenotyping system is 
needed that can continuously and simultaneously monitor plant physi
ological traits in response to changing environmental conditions, 
particularly those related to the soil-plant-atmosphere continuum 
(SPAC).[94,95]; [94,96,97]. 

Another challenge involves closing the knowledge gap between 
phenotypes and genotypes in order to effectively handle the extensive 
data on quantitative physiological traits obtained from pedigreed or 
natural populations. It is crucial to identify precise quantitative trait loci 
(QTLs) and comprehend the genetic interactions that drive phenotypic 
variations. Traditional genetic mapping methods typically rely on static 
data collected at a single time point, which may not fully capture the 
dynamic nature of QTL effects [98–100]. To overcome these challenges, 
there is a need for advanced methodologies that can integrate dynamic 
phenotypic data with genotypic information. Such approaches would 
enable the identification of time-varying QTLs and provide insights into 
the underlying genetic mechanisms driving phenotypic variations over 
time. An example of a platform that addresses these challenges is the 
Functional Phenomics Platform (FPP), which enables the continuous 
measurement of various plant-related factors as well as ambient condi
tions, encompassing soil and atmosphere parameters. These platforms 
provide a comprehensive and real-time monitoring system for studying 
and understanding the complex interactions between plants and their 
environment [40]. 

Functional mapping (FM) a mathematical approach that integrates 
the dynamic pathways involved in phenotypic formation. By utilizing 
mathematical equations, FM can uncover the quantitative trait loci 
(QTLs) that govern rate-limiting processes and quantify the changes in 
their genetic effects over time or space [51]. FM provides a compre
hensive understanding of the genetic basis of complex traits and their 
temporal or spatial variations. By combining genetic and physiological 
information, FM reveals the underlying genetic architecture of quanti
tative traits and how they respond to changing environmental condi
tions. In the context of drought stress, FM can be particularly valuable. 
By integrating data from high-throughput phenotyping platforms with 
genetic information, FM allows for the identification of specific QTLs 
that are responsible for the dynamic phenotypic changes observed under 
drought stress [37,51]. In a research study that specifically investigated 
an introgression line population of tomatoes exposed to progressive 
drought stress and subsequent recovery, the combination of Functional 
Phenomics Platform (FPP) and Functional Mapping (FM) proved to be a 
valuable approach in unraveling the genetic basis of weight-normalized 
transpiration rate (E), which is a dynamic trait [46]. By employing FPP, 
which allowed for continuous measurement of E, and applying the 
principles of FM, the plant scientist were able to uncover the genetic 
factors responsible for the variations observed in E throughout the 
duration of the drought stress and subsequent recovery period [51]. This 
integrated approach provided a deeper understanding of how genetic 
factors influence the dynamics of E under drought conditions. It allowed 
them to identify specific genomic regions, known as quantitative trait 
loci (QTLs) that were associated with variations in E during different 
stages of the stress and recovery process [40,46]. 

This joint framework of FPP and FM has the potential to shed light on 
the genetic factors and underlying mechanisms involved in trait dy
namics. By analyzing the continuous and integrated data, we can iden
tify key genetic components associated with the variations in traits over 
time or in response to specific stressors [46,52]. It can be applied to a 
wide range of physiological processes and stress responses, allowing us 
to investigate diverse aspects of plant biology and improve crop per
formance under challenging environmental conditions [37,40]. 

4.1. Automated drought simulator phenotyping platform 

In a study acquired drought tolerance (ADT) traits in two rice cul
tivars were examined, one which is drought susceptible (IR64) and 
another is drought tolerant (Apo), as well as a drought-tolerant wheat 
cultivar named Weebill. To induce soil moisture stress and capture 
above-ground vegetative traits accurately, they utilized a novel phe
nomic platform equipped with an automated irrigation system. This 
platform allowed precise control over soil moisture levels, enabling 
them to simulate drought conditions and monitor the resulting effects on 

Table 2 
The challenges and limitations associated with advanced phenotyping.  

S. 
No 

Type of challenge Description  

1 Complexity Phenotyping different traits accurately and 
comprehensively requires accounting for the 
interactions and dependencies between many 
factors, which poses significant challenges in 
experimental design, data collection, and data 
analysis.  

2 Trait Selection Choosing relevant and informative traits is 
crucial but challenging. Furthermore, 
standardizing phenotyping protocols is 
essential to ensure consistency and 
comparability of results.  

3 Non-invasive and 
Measurement 

Developing techniques that can accurately 
capture detailed phenotypic information, 
especially at the cellular or subcellular level, 
remains challenging  

4 Large Scale data 
Management 

The generation of large-scale phenotypic 
datasets poses challenges in data management, 
storage, and analysis. Standardization of data 
formats, metadata, and ontologies is crucial for 
facilitating data sharing, collaboration, and 
comparative analyses  

5 Controlled Environment 
to Field Conditions 

The translation of phenotyping results 
obtained from controlled environments, such 
as growth chambers or greenhouses, to field 
conditions poses challenges due to the inherent 
complexity and variability of field 
environments  

6 Cost and Accessibility Many advanced phenotyping technologies and 
infrastructure can be costly, limiting their 
accessibility to us and breeders, particularly in 
resource-limited settings  
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plant growth and development. This system enabled the gradual pro
gression of drought stress by employing software-controlled automated 
irrigation, ensuring consistent soil moisture levels regardless of varia
tions in transpiration rates [101]. Another system known for its so
phisticated ability to create specific drought scenarios as well as to 
measure many functional traits (whole-plant transpiration and stomatal 
conductance, etc.) is Plantarray (by Plant-DiTech). This system is 
capable of tailoring stress levels to each plant in a feedback-irrigation 
algorithm, considering its size and conditions, by integrating plant 
transpiration, soil sensing, and target weight adjustments in dynamic 
environments [47]. 

The implementation of this approach provided an accurate method 
for assessing ADT traits in the plants. The phenomic platform with its 
automated irrigation system emerged as a valuable tool in imposing and 
monitoring drought stress conditions with precision. It enabled to 
examine ADT (Above-ground Dry Biomass) traits during the vegetative 
stage of plants. Also, the Plantarray system measures the actual plant 
biomass continuously and simultaneously for all plants. Therefore, the 
platform facilitated the generation of specific and comparable stress 
conditions, enhancing the reliability and reproducibility of the experi
mental results. [101]. 

4.2. HTP-telemetric phenotypic screening platforms 

The automated measurement and transmission of data from distant 
sources to a central receiving station via telemetry technology is 
essential for easing data recording and analysis. A nondestructive High- 
Throughput (HTP) telemetric device that combines several weighing 
lysimeters and environmental sensors for effective data gathering and 
processing is shown in a recent work by Dalal et al. (2020). This platform 
eliminates the need for image analysis by allowing the computation of 
several metrics in real-time, including whole-plant biomass gain, tran
spiration rates, stomatal conductance, root fluxes, and water-use effi
ciency (WUE). In particular, for controlled environment phenotyping 
research targeted at greenhouse drought stress investigations, real-time 
data processing improves the translation of data into usable knowledge. 
The telemetry platform offers several benefits, including scalability, 
easy installation, and minimal infrastructure requirements in growth 
facilities. It operates on a sensor-based system without moving parts, 
resulting in relatively low maintenance costs both in terms of initial 
investment and long-term upkeep. For instance, the cost of a 20-unit 
gravimetric system with feedback fertigation systems, a meteorolog
ical station, and software is comparable to that of a single portable gas- 
exchange system from a leading brand [48]. 

4.3. Bioristor 

In 2019, Michela Janni and her team introduced a pioneering in vivo 
sensing device called the bioristor, which is an organic electrochemical 
transistor (OECT) sensor. This sensor was successfully integrated into 
the stem of tomato plants, enabling continuous monitoring of the plant’s 
physiological state throughout its life cycle. The bioristor demonstrated 
its effectiveness in detecting changes in ion concentration within the 
plant’s sap under drought conditions, providing immediate detection of 
drought stress and activation of defense responses (Janni et al., 2019). 
By combining the bioristor data with a high-throughput phenotyping 
platform, it showcased the complementary nature of these methods in 
studying mechanisms related to drought stress. These experiments 
represent a significant advancement in in vivo sensing technology 
applied to tomato plants. The bioristor offers several advantages for 
precision agriculture and high-throughput phenotyping of drought 
response, including continuous monitoring of plant physiology, minimal 
invasiveness, low cost, and easily interpretable data. Overall, the bio
ristor holds great promise as a valuable tool for studying and addressing 
drought stress in agricultural settings [49]. 

4.4. The functional phenotyping plant array 3.0 platform 

In a 2019 study conducted by Ahan Dalal and colleagues, they uti
lized the Plantarray 3.0 platform (Plant-Ditech), a functional pheno
typing system, to monitor plant performance throughout their 
experiment. This platform allowed them to control the irrigation 
schedule and quantity, enabling high-throughput physiological func
tional phenotyping. The system consisted of 72 units equipped with 
highly sensitive load cells that served as weighing lysimeters [47]. These 
load cells were temperature-compensated and connected to personal
ized controllers that collected data and controlled irrigation for each 
individual plant. To achieve precise irrigation, each pot had its own 
independent controller, which facilitated tight feedback irrigation based 
on the plant’s transpiration rate. The controllers were interconnected, 
allowing for serial data collection and transmission to a server. Each pot, 
containing a single plant, was placed on a load cell for weighing pur
poses (more information in the "Experimental Setup" section). The 
collected data were analyzed using SPAC analytics, an online web-based 
software provided by Plant-Ditech. This software enabled real-time data 
visualization and analysis of the information gathered from the Plan
tarray system. 

The utilization of the setup provided several advantages, including 
the ability to monitor water-related dynamics and plant-environment 
responses with high precision throughout the entire life cycle of the 
plant. The use of the phenomic platform with an automated irrigation 
system facilitated the implementation of a randomized experimental 
design with multiple independent treatment scenarios for each plant. 
This design minimized artificial disturbances arising from plant immo
bility or other objects, ensuring robust experimental conditions. Addi
tionally, the study introduced two novel resilience-related traits: 
transpiration recovery rate and night water reabsorption. These traits 
were accurately measured using the High-Throughput Field Phenotyp
ing System (HFPS) incorporated in the phenomic platform. The HFPS 
enabled efficient and precise measurements of these traits, providing 
valuable insights into the plants’ capacity to recover from drought stress 
and their ability to reabsorb water during the night. These novel traits 
contribute to a better understanding of plant resilience mechanisms 
under drought conditions. The study provided valuable insights into the 
pre-field phenotyping of plants/crops using these biostimulants, 
emphasizing the significance of assessing their physiological mecha
nisms of action before their application in the field [47]. 

5. Conclusion 

Identifying physiological markers that can effectively and easily 
select parental inbred lines and hybrids is crucial for improving breeding 
processes and developing plant varieties with drought stress tolerance. 
These markers need to be easily measurable, quickly assessed, and 
genetically heritable. The approach of integrating functional physio
logical phenotyping and functional genomics in studying plant re
sponses to drought holds great potential for breeders. It enables the 
dynamic study of how plants react to drought stress and the discovery of 
crucial traits linked to tolerance. Furthermore, the relationship between 
agricultural productivity and physicochemical variables presents a 
chance to create effective algorithms for crop modeling, early yield 
forecasting, and predicting yield losses due to drought. 
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[81] C. Ballester, M.A. Jiménez-Bello, J.R. Castel, D.S. Intrigliolo, Usefulness of 
thermography for plant water stress detection in citrus and persimmon trees, 
Agric. Meteor. 168 (2013) 120–129. 

[82] T. ryoun Kwon, K. hwan Kim, H.J. Yoon, S. kon Lee, B. ki Kim, Z.S. Siddiqui, 
Phenotyping of plants for drought and salt tolerance using infra-red 
thermography, Plant Breed. Biotechnol. 3 (4) (2015) 299–307. 

[83] R. Ludovisi, F. Tauro, R. Salvati, S. Khoury, G. Mugnozza Scarascia, A. Harfouche, 
UAV-based thermal imaging for high-throughput field phenotyping of black 
poplar response to drought, Front Plant Sci. 8 (2017) 1681. 

[84] P. Rischbeck, P. Cardellach, B. Mistele, U. Schmidhalter, Thermal phenotyping of 
stomatal sensitivity in spring barley, J. Agron. Crop Sci. 203 (6) (2017) 483–493. 

[85] R. Casari, D. Paiva, V. Silva, T. Ferreira, Junior M. Souza, N. Oliveira, et al., Using 
thermography to confirm genotypic variation for drought response in maize, Int 
J. Mol. Sci. 20 (9) (2019) 2273. 
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